Advertisement

Journal of Solution Chemistry

, Volume 42, Issue 12, pp 2329–2341 | Cite as

Cyclic Voltammetry of Metallic Acetylacetonate Salts in Quaternary Ammonium and Phosphonium Based Deep Eutectic Solvents

  • Mohammed Harun ChakrabartiEmail author
  • Nigel P. Brandon
  • Farouq S. Mjalli
  • Laleh Bahadori
  • Inas M. Al Nashef
  • Mohd. Ali Hashim
  • M. A. Hussain
  • Chee Tong John Low
  • Vladimir Yufit
Article

Abstract

Seven commercially sourced acetylacetonate salts were investigated in deep eutectic solvents (DESs that were prepared from ethylene glycol and trifluoroacetamide hydrogen bond donors) by cyclic voltammetry, to identify electrolytes suitable for future applications in electrochemical energy storage devices. Although the solubilities are low and on the order of 0.02 mol·L−1 for the most soluble salts, some were found to display encouraging quasi-reversible electrochemical kinetics. For instance, the diffusion coefficients of copper(II) acetylacetonate and iron(III) acetylacetonate in the trifluoroacetamide based DES are 1.14 × 10−8 and 5.12 × 10−9 cm2·s−1, which yields rate constants of 3.16 × 10−3 and 8.43 × 10−6 cm·s−1, respectively. These results are better than those obtained with the DESs prepared from ethylene glycol. The poor kinetics of the iron(III) acetylacetonate system was possibly due to the hygroscopic nature of the DESs that resulted in a continuous build-up of moisture in the system in spite of the maintenance of an inert atmosphere by means of a plastic glove bag. Further work is thus envisaged in an inert dry box that could lead to H-type glass cell charge/discharge experiments in the future.

Keywords

Acetylacetonate Solubility Deep eutectic solvents Electrochemical energy storage 

Notes

Acknowledgments

The authors are grateful to the University of Malaya and the Ministry of Higher Education in Malaysia for supporting this collaborative work via the research grants UM.C/HIR/MOHE/ENG/18 and UM.C/HIR/MOHE/ENG/25 as well as the Deanship of Scientific Research at King Saud University through group project No. RGP-VPP-108, which made possible an extended visit of MHC to the University of Southampton and Imperial College London in the UK. The authors are also grateful to the reviewers for providing useful comments that have resulted in a significant enhancement in the quality of this paper.

Supplementary material

10953_2013_111_MOESM1_ESM.doc (947 kb)
Electronic supplementary material The online version of this article (doi: 10.1007/s10953-013-) contains supplementary material, which is available to authorized users. (DOC 947 kb)

References

  1. 1.
    Schreiber, E., Ziener, U., Manzke, A., Plettl, A., Ziemann, P., Landfester, K.: Preparation of narrowly size distributed metal-containing polymer latexes by miniemulsion and other emulsion techniques: applications for nanolithography. Chem. Mater. 21, 1750–1760 (2009)CrossRefGoogle Scholar
  2. 2.
    Mahdavian, M., Attar, M.M.: Electrochemical behaviour of some transition metal acetylacetonate complexes as corrosion inhibitors for mild steel. Corros. Sci. 51, 409–414 (2009)CrossRefGoogle Scholar
  3. 3.
    Dias, M.L., Crossetti, G.L., Bormioli, C., Giarusso, A., de Santa Maria, L.C., Coutinho, F.M.B., Porri, L.: Isospecific polymerization of styrene with supported nickel acetylacetonate/methylaluminoxane catalysts. Polym. Bull. 40, 689–694 (1998)CrossRefGoogle Scholar
  4. 4.
    Coutinho, F.M.B., Iwamoto, R.K., Costa, M.A.S., de Santa Maria, L.C.: Polymerization of ethylene by chromium acetylacetonate/methylaluminoxane catalyst system. Polym. Bull. 40, 695–700 (1998)CrossRefGoogle Scholar
  5. 5.
    Koritala, S.: Homogeneous catalytic hydrogenation of soybean oil: palladium acetylacetonate. J. Am. Oil Chem. Soc. 62, 517–520 (1985)CrossRefGoogle Scholar
  6. 6.
    Tocher, J.H., Fackler Jr, J.P.: Electrochemical investigations of several transition metal tris-(acetylacetonate) complexes. Inorg. Chim. Acta 102, 211–215 (1985)CrossRefGoogle Scholar
  7. 7.
    Naderi, R., Mahdavian, M., Attar, M.M.: Electrochemical behavior of organic and inorganic complexes of Zn(II) as corrosion inhibitors for mild steel: solution phase study. Electrochim. Acta 54, 6892–6895 (2009)CrossRefGoogle Scholar
  8. 8.
    Mahdavian, M., Naderi, R.: Corrosion inhibition of mild steel in sodium chloride solution by some zinc complexes. Corros. Sci. 53, 1194–1200 (2011)CrossRefGoogle Scholar
  9. 9.
    Migowski, P., Dupont, J.: Catalytic applications of metal nanoparticles in imidazolium ionic liquids. Chem. Eur. J. 13, 32–39 (2006)CrossRefGoogle Scholar
  10. 10.
    Umpierre, A.P., Machado, G., Fecher, G.H., Morais, J., Dupont, J.: Selective hydrogenation of 1,3-butadiene to 1-butene by Pd(0) nanoparticles embedded in imidazolium ionic liquids. Adv. Synth. Catal. 347, 1404–1412 (2005)CrossRefGoogle Scholar
  11. 11.
    Wang, Y., Yang, H.: Synthesis of CoPt nanorods in ionic liquids. J. Am. Chem. Soc. 127, 5316–5317 (2005)CrossRefGoogle Scholar
  12. 12.
    Lewandowski, A., Waligora, L., Galinski, M.: Electrochemical behavior of cobaltocene in ionic liquids. J. Solution Chem. 42, 251–262 (2013)CrossRefGoogle Scholar
  13. 13.
    Dupont, J., Scholten, J.D.: On the structural and surface properties of transition-metal nanoparticles in ionic liquids. Chem. Soc. Rev. 39, 1780–1804 (2010)CrossRefGoogle Scholar
  14. 14.
    Abbott, A.P., McKenzie, K.J.: Application of ionic liquids to the electrodeposition of metals. Phys. Chem. Chem. Phys. 8, 4265–4279 (2006)CrossRefGoogle Scholar
  15. 15.
    Abbott, A.P., Frisch, G., Ryder, K.S.: Metal complexation in ionic liquids. Annu. Rep. Prog. Chem. A 104, 21–45 (2008)CrossRefGoogle Scholar
  16. 16.
    Aidoudi, F.H., Byrne, P.J., Allan, P.K., Teat, S.J., Lightfoot, P., Morris, R.E.: Ionic liquids and deep eutectic mixtures as new solvents for the synthesis of vanadium fluorides and oxyfluorides. Dalton Trans. 40, 4324–4331 (2011)CrossRefGoogle Scholar
  17. 17.
    Abbott, A.P., Ttaib, K.E., Ryder, K.S.: Electrodeposition of nickel using eutectic based ionic liquids. Trans. Inst. Met. Finish. 86, 234–240 (2008)CrossRefGoogle Scholar
  18. 18.
    Dai, M., Song, L., LaBelle, J.T., Vogt, B.D.: Ordered mesoporous carbon composite films containing cobalt oxide and vanadia for electrochemical applications. Chem. Mater. 23, 2869–2878 (2011)CrossRefGoogle Scholar
  19. 19.
    Armand, M., Tarascon, J.-M.: Building better batteries. Nature 451, 652–657 (2008)CrossRefGoogle Scholar
  20. 20.
    Portet, C., Taberna, P.L., Simon, P., Flahaut, E., Robert, C.L.: High power density electrodes for carbon supercapacitor applications. Electrochim. Acta 50, 4174–4181 (2005)CrossRefGoogle Scholar
  21. 21.
    Sleightholme, A.E.S., Shinkle, A.A., Liu, Q., Li, Y., Monroe, C.W., Thompson, L.T.: Non-aqueous manganese acetylacetonate electrolyte for redox flow batteries. J. Power Source 196, 5742–5745 (2011)CrossRefGoogle Scholar
  22. 22.
    Chakrabarti, M.H., Roberts, E.P.L., Bae, C., Saleem, M.: Ruthenium based redox flow battery for solar energy storage. Energy Convers. Manage. 52, 2501–2508 (2011)CrossRefGoogle Scholar
  23. 23.
    Liu, Q., Shinkle, A.A., Li, Y., Monroe, C.W., Thompson, L.T., Sleightholme, A.E.S.: Non-aqueous chromium acetylacetonate electrolyte for redox flow batteries. Electrochem. Commun. 12, 1634–1637 (2010)CrossRefGoogle Scholar
  24. 24.
    Chakrabarti, M.H., Dryfe, R.A.W., Roberts, E.P.L.: Organic electrolytes for redox flow batteries. J. Chem. Soc. Pak. 29, 294–300 (2007)Google Scholar
  25. 25.
    Liu, Q., Sleightholme, A.E.S., Shinkle, A.A., Li, Y., Thompson, L.T.: Non-aqueous vanadium acetylacetonate electrolyte for redox flow batteries. Electrochem. Commun. 11, 2312–2315 (2009)CrossRefGoogle Scholar
  26. 26.
    Chakrabarti, M.H., Dryfe, R.A.W., Roberts, E.P.L.: Evaluation of electrolytes for redox flow battery applications. Electrochim. Acta 52, 2189–2195 (2007)CrossRefGoogle Scholar
  27. 27.
    Chakrabarti, M.H., Roberts, E.P.L., Saleem, M.: Charge/discharge performance of a novel undivided redox flow battery for renewable energy storage. Int. J. Green Energy 7, 445–460 (2010)CrossRefGoogle Scholar
  28. 28.
    Bae, C., Chakrabarti, H., Roberts, E.: A membrane free electrochemical cell using porous flow-through graphite felt electrodes. J. Appl. Electrochem. 38, 637–644 (2008)CrossRefGoogle Scholar
  29. 29.
    Chakrabarti, M.H., Roberts, E.P.L.: Electrochemical separation of ferro/ferricyanide using a membrane free redox flow cell. NED Univ. J. Res. 5, 43–59 (2008)Google Scholar
  30. 30.
    Leung, P., Li, X., Ponce de León, C., Berlouis, L., Low, C.T.J., Walsh, F.C.: Progress in redox flow batteries, remaining challenges and their applications in energy storage. RSC Adv. 2, 10125–10156 (2012)CrossRefGoogle Scholar
  31. 31.
    Chakrabarti, M.H., Hajimolana, S.A., Mjalli, F.S., Saleem, M., Mustafa, I.: Redox flow battery for energy storage. Arab. J. Sci. Eng. 38, 723–739 (2012)CrossRefGoogle Scholar
  32. 32.
    Bard, A.J., Faulkner, L.R.: Electrochemical Methods: Fundamentals and Applications. Wiley, New York (2001)Google Scholar
  33. 33.
    Bahadori, L., Manan, N.S.A., Chakrabarti, M.H., Hashim, M.A., Mjalli, F.S., Al Nashef, I.M., Hussain, M.A., Low, C.T.J.: The electrochemical behaviour of ferrocene in deep eutectic solvents based on quaternary ammonium and phosphonium salts. Phys. Chem. Chem. Phys. 15, 1707–1714 (2013)CrossRefGoogle Scholar
  34. 34.
    Abbott, A.P., Boothby, D., Capper, G., Davies, D.L., Rasheed, R.K.: Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J. Am. Chem. Soc. 126, 9142–9147 (2004)CrossRefGoogle Scholar
  35. 35.
    Chakrabarti, M.H., Brandon, N.P., Hashim, M.A., Mjalli, F.S., AlNashef, I.M., Bahadori, L., Abdul Manan, N.S., Hussain, M.A., Yufit, V.: Cyclic voltammetry of iron (III) Acetylacetonate in quaternary ammonium and phosphonium based deep eutectic solvents. Int. J. Electrochem. Sci. 8, 9652–9676 (2013)Google Scholar
  36. 36.
    Tsierkezos, N.G.: Cyclic voltammetric studies of ferrocene in nonaqueous solvents in the temperature range from 248.15 to 298.15 K. J. Solution Chem. 36, 289–302 (2007)CrossRefGoogle Scholar
  37. 37.
    Hayyan, M., Mjalli, F.S., Hashim, M.A., Al Nashef, I.M., Mei, T.X.: Investigating the electrochemical windows of ionic liquids. J. Ind. Eng. Chem. 19, 106–112 (2013)CrossRefGoogle Scholar
  38. 38.
    Sun, J., Forsyth, M., MacFarlane, D.R.: Room-temperature molten salts based on the quaternary ammonium ion. J. Phys. Chem. B 102, 8858–8864 (1998)CrossRefGoogle Scholar
  39. 39.
    Rogers, E.I., Ljukic, B.S., Hardacre, C., Compton, R.G.: Electrochemistry in room-temperature ionic liquids: potential windows at mercury electrodes. J. Chem. Eng. Data 54, 2049–2053 (2009)CrossRefGoogle Scholar
  40. 40.
    Abbott, A.P., Frisch, G., Gurman, S.J., Hillman, A.R., Hartley, J., Holyoak, F., Ryder, K.S.: Ionometallurgy: designer redox properties for metal processing. Chem. Commun. 47, 10031–10033 (2011)CrossRefGoogle Scholar
  41. 41.
    Lloyd, D., Vainikka, T., Murtomäki, L., Kontturi, K., Ahlberg, E.: The kinetics of the Cu2+/Cu+ redox couple in deep eutectic solvents. Electrochim. Acta 56, 4942–4948 (2011)CrossRefGoogle Scholar
  42. 42.
    Abbott, A.P., Capper, G., McKenzie, K.J., Ryder, K.S.: Electrodeposition of zinc–tin alloys from deep eutectic solvents based on choline chloride. J. Electroanal. Chem. 599, 288–294 (2007)CrossRefGoogle Scholar
  43. 43.
    Pereira, N.M., Fernandes, P.M.V., Pereira, C.M., Silva, A.F.: Electrodeposition of zinc from choline chloride–ethylene glycol deep eutectic solvent: effect of the tartrate ion electrochemical/electroless deposition. J. Electrochem. Soc. 159, D501–D506 (2012)CrossRefGoogle Scholar
  44. 44.
    Whitehead, A.H., Pölzler, M., Gollas, B.: Zinc electrodeposition from a deep eutectic system containing choline chloride and ethylene glycol electrochemical/chemical deposition and etching. J. Electrochem. Soc. 157, D328–D334 (2010)CrossRefGoogle Scholar
  45. 45.
    Hayyan, M., Hashim, M.A., Hayyan, A., Al-Saadi, M.A., Al Nashef, I.M., Mirghani, M.E.S., Saheed, O.K.: Are deep eutectic solvents benign or toxic? Chemosphere 90, 2193–2195 (2013)CrossRefGoogle Scholar
  46. 46.
    Nkuku, C.A., LeSuer, R.J.: Electrochemistry in deep eutectic solvents. J. Phys. Chem. B 111, 13271–13277 (2007)CrossRefGoogle Scholar
  47. 47.
    Shahbaz, K., Mjalli, F.S., Hashim, M.A., AlNashef, I.M.: Eutectic solvents for the removal of residual palm oil-based biodiesel catalyst. Sep. Purif. Technol. 81, 216–222 (2011)CrossRefGoogle Scholar
  48. 48.
    Beyersdorff, T., Schubert, T.J.S., Biermann, U.W., Pitner, W., Abbott, A.P., McKenzie, K.J., Ryder, K.S.: Deep eutectic solvents. In: Endres, F., Abbott, A.P., MacFarlane, D.R. (eds.) Electrodeposition from Ionic Liquids. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2008)Google Scholar
  49. 49.
    Zhang, Q., Vigier, K.D.O., Royer, S., Jérôme, F.: Deep eutectic solvents: syntheses, properties and applications. Chem. Soc. Rev. 41, 7108–7146 (2012)CrossRefGoogle Scholar
  50. 50.
    Nicholson, R.S.: Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal. Chem. 37, 1351–1355 (1965)CrossRefGoogle Scholar
  51. 51.
    Bahadori, L., Chakrabarti, M.H., Mjalli, F.S., AlNashef, I.M., Manan, N.S.A., Hashim, M.A.: Physicochemical properties of ammonium-based deep eutectic solvents and their electrochemical evaluation using organometallic reference redox systems. Electrochim. Acta. 113, 205–211 (2013)CrossRefGoogle Scholar
  52. 52.
    Pratt III, H.D., Leonard, J.C., Steele, L.A.M., Staiger, C.L., Anderson, T.M.: Copper ionic liquids: examining the role of the anion in determining physical and electrochemical properties. Inorg. Chim. Acta 396, 78–83 (2012)CrossRefGoogle Scholar
  53. 53.
    Anderson, T.M., Ingersoll, D., Rose, A.J., Staiger, C.L., Leonard, J.C.: Synthesis of an ionic liquid with an iron coordination cation. Dalton Trans. 39, 8609–8612 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mohammed Harun Chakrabarti
    • 1
    • 2
    Email author
  • Nigel P. Brandon
    • 2
  • Farouq S. Mjalli
    • 3
  • Laleh Bahadori
    • 1
  • Inas M. Al Nashef
    • 4
  • Mohd. Ali Hashim
    • 1
  • M. A. Hussain
    • 1
  • Chee Tong John Low
    • 5
  • Vladimir Yufit
    • 2
  1. 1.Department of Chemical Engineering, Faculty of EngineeringUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of Earth Science and EngineeringImperial College LondonLondonUK
  3. 3.Petroleum & Chemical Engineering DepartmentSultan Qaboos UniversityMuscatOman
  4. 4.Chemical Engineering DepartmentKing Saud UniversityRiyadhSaudi Arabia
  5. 5.Electrochemical Engineering Laboratory, Energy Technology Research Group, Faculty of Engineering and the EnvironmentUniversity of SouthamptonSouthamptonUK

Personalised recommendations