Journal of Solution Chemistry

, Volume 42, Issue 11, pp 2087–2103 | Cite as

Volumetric Studies of 2,2,2-Cryptand in Aqueous and Aqueous KBr Solutions at 298.15 K: An Example Involving Solvent-Induced Hydrophilic and Hydrophobic Interactions

  • Vasim R. Shaikh
  • Santosh S. Terdale
  • A. Abdul
  • Gaurav R. Gupta
  • Dilip G. Hundiwale
  • Kesharsingh J. PatilEmail author


Density measurements of good precision are reported for aqueous and aqueous salt (KBr) solutions containing 2,2,2-cryptand (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane) (~0.009 to ~0.24 mol·kg−1) for the binary systems and for the ternary system with ~0.1 mol·kg−1 2,2,2-cryptand and varying KBr concentrations (~0.06 to ~ 0.16 mol·kg−1) at 298.15 K. The density data have been used to study the variation of apparent molar volume (\( \varphi_{V} \)) of 2,2,2-cryptand and of KBr as a function of concentration. 2,2,2-Cryptand is a diamine and hence it is hydrolyzed in aqueous solutions and needs an appropriate methodology to obtain meaningful thermodynamic properties. We have adopted a method of hydrolysis correction developed initially by Cabani et al. and later by Kaulgud et al. to analyze our volumetric data for the aqueous solutions. The method is described and we were successful in obtaining the limiting partial molar volume of the bare (free) cryptand in water at 298.15 K. Volumes of ionization as well as volumes of complexation (with KBr) are calculated. Estimations of the apparent molar volume of 2,2,2-cryptand in CCl4 are also reported. There is a loss in volume for the cryptand on transferring it from CCl4 to water. The volume changes due to ionization for the cryptand in water are calculated to be –20.5 and –0.6 cm3·mol−1 for the mono- and di-protonation equilibria respectively, while the volume of complexation for K+ is +24.5 cm3·mol−1. The results are discussed in terms of conformation, protonation equilibria and selective encapsulation of K+ ions in cryptand cavities. The solution volume properties seem to depend upon water–solute interaction as well on the solute–solute association because of hydrophobic interactions caused by lowering of the charge density on formation of cryptand-K+ species in solution.


2,2,2-Cryptand Density Apparent molar volume Hydrolysis correction Volume of ionization Volume of complexation 



The authors wish to thank Prof. P. P. Mahulikar, Director, School of Chemical Sciences, North Maharashtra University, Jalgaon, Maharashtra (India), for providing all the facilities required for the experimental work. Mr. Vasim R. Shaikh and Mr. Abdul A. acknowledges the University Grants Commission, New Delhi (India), for financial assistance through the Maulana Azad National Fellowship (MANF) for Minority Students and Research Fellowships in Sciences for Meritorious Students (RFSMS), respectively.


  1. 1.
    Special section on supramolecular chemistry and self-assembly. Science 295, 2395–2421 (2002)Google Scholar
  2. 2.
    Saenger, W.: Cyclodextrin inclusion compounds in research and industry. Angew. Chem. Int. Ed. 19, 344–362 (1980)CrossRefGoogle Scholar
  3. 3.
    Weber, E., Toner, J.L., Goldberg, I., Vögtle, F., Laidler, D., Stoddard, J.F., Bartsch, R.A., Liotta, C.L.: Crown Ethers and Analogues. Wiley, Chichester (1989)CrossRefGoogle Scholar
  4. 4.
    Cram, D.J.: The design of molecular hosts, guests, and their complexes. Science 240, 760–767 (1988)CrossRefGoogle Scholar
  5. 5.
    Lehn, J.M.: Design of organic complexing agents, strategies towards properties. Struct. Bonding 16, 1–69 (1973)CrossRefGoogle Scholar
  6. 6.
    Lehn, J.M.: Cryptates: the chemistry of macropolycyclic inclusion complexes. Acc. Chem. Res. 11, 49–57 (1978)CrossRefGoogle Scholar
  7. 7.
    Lehn, J.M., Sauvage, J.P.: [2]-Cryptates: stability and selectivity of alkali and alkaline-earth macrobicyclic complexes. J. Am. Chem. Soc. 97, 6700–6707 (1975)CrossRefGoogle Scholar
  8. 8.
    Cox, B.G., Garcia-Ross, J., Schneider, H.: Solvent dependence of the stability of cryptate complexes. J. Am. Chem. Soc. 103, 1384–1389 (1981)CrossRefGoogle Scholar
  9. 9.
    Abraham, M.H., Danil De Namor, A.F., Schulz, R.A.: Thermodynamic studies of cryptand 222 and cryptates in water and methanol. J. Chem. Soc. Faraday I 76, 869–884 (1980)CrossRefGoogle Scholar
  10. 10.
    Morel-Desrosiers, N., Morel, J.P.: Volumes of complexation of cryptands with mono- and divalent cations in water and in methanol. J. Am. Chem. Soc. 103, 4743–4746 (1981)CrossRefGoogle Scholar
  11. 11.
    Morel-Desrosiers, N., Morel, J.P.: Heat capacities and volumes of monoprotonation and diprotonation of cryptand 222 in water at 298.15 K. J. Phys. Chem. 88, 1023–1027 (1984)CrossRefGoogle Scholar
  12. 12.
    Morel-Desrosiers, N., Morel, J.P.: Heat capacities of alkali and alkaline-earth 222-cryptates in water and methanol at 298.15 K. J. Phys. Chem. 89, 1541–1546 (1985)CrossRefGoogle Scholar
  13. 13.
    Dietrich, B., Lehn, J.M., Sauvage, J.P.: Diaza-polyoxa-macrocycles et macrobicycles. Tetrahedron Lett. 10, 2885–2888 (1969)CrossRefGoogle Scholar
  14. 14.
    Park, C.H., Simmons, H.E.: Macrobicyclic amines. III. Encapsulation of halide ions by in, in-1,(k + 2)-diazabicyclo[k.l.m.]alkane ammonium ions. J. Am. Chem. Soc. 90, 2431–2432 (1968)CrossRefGoogle Scholar
  15. 15.
    Kolhapurkar, R.R., Patil, P.K., Dagade, D.H., Patil, K.J.: Studies of thermodynamic properties of binary and ternary methanolic solutions containing KBr and 18-crown-6 at 298.15 K. J. Solution Chem. 35, 1357–1376 (2006)CrossRefGoogle Scholar
  16. 16.
    Mootz, D., Albert, A., Schaefgen, S., Staeben, D.: 18-crown-6 and water: crystal structure of a binary hydrate. J. Am. Chem. Soc. 116, 12045–12046 (1994)CrossRefGoogle Scholar
  17. 17.
    Fukuhara, K., Ikeda, K., Matsuura, H.: Raman spectroscopic study of the conformational equilibria in 18-crown-6 in water: predominant D3d conformation. Specrtochim. Acta Part A 50, 1619–1628 (1994)CrossRefGoogle Scholar
  18. 18.
    Patil, K.J., Kirschgen, T.M., Holz, M., Zeidler, M.D.: Nuclear magnetic relaxation studies for investigating the hydration of 15-crown-5 and 18-crown-6 ethers in aqueous and aqueous salt solutions. J. Mol. Liq. 81, 201–212 (1999)CrossRefGoogle Scholar
  19. 19.
    Patil, K.J., Heil, S.R., Holz, M., Zeidler, M.D.: Self-diffusion coefficient and apparent molar volume studies of crown ethers in aqueous (D2O) and CDCl3 solutions. Ber. Bunsenges. Phys. Chem. 101, 91–95 (1997)CrossRefGoogle Scholar
  20. 20.
    Patil, K., Pawar, R.: Near-infrared spectral studies for investigating the hydration of 18-crown-6 in aqueous solutions. J. Phys. Chem. B 103, 2256–2261 (1999)CrossRefGoogle Scholar
  21. 21.
    Patil, K.J., Pawar, R.B., Gokavi, G.S.: Studies of partial molar volumes of 18-crown-6 in water at 25°C. J. Mol. Liq. 75, 143–148 (1998)CrossRefGoogle Scholar
  22. 22.
    Patil, K., Pawar, R., Dagade, D.: Studies of osmotic and activity coefficients in aqueous and CCl4 solutions of 18-crown-6 at 25°C. J. Phys. Chem. A 106, 9606–9611 (2002)CrossRefGoogle Scholar
  23. 23.
    Dagade, D.H., Kolhapurkar, R.R., Terdale, S.S., Patil, K.J.: Thermodynamics of aqueous solutions of 18-crown-6 at 298.15 K: enthalpy and entropy effects. J. Solution Chem. 34, 415–426 (2005)CrossRefGoogle Scholar
  24. 24.
    Kowall, T., Geiger, A.: Molecular dynamics simulation study of 18-crown-6 in aqueous solution. 1. Structure and dynamics of the hydration shell. J. Phys. Chem. 98, 6216–6224 (1994)CrossRefGoogle Scholar
  25. 25.
    Ha, Y.L., Chakraborty, A.K.: Effects of solvent polarity and temperature on the conformational statistics of a simple macrocyclic polyether. J. Phys. Chem. 95, 10781–10787 (1991)CrossRefGoogle Scholar
  26. 26.
    Pelc, H.W., Hempelmann, R., Prager, M., Zeidler, M.D.: Dynamics of 18-crown-6 ether in aqueous solution studied by quasielastic neutron scattering. Ber. Bunsenges. Phys. Chem. 95, 592–598 (1991)CrossRefGoogle Scholar
  27. 27.
    Terdale, S.S., Dagade, D.H., Patil, K.J.: Thermodynamic studies of molecular interactions in aqueous α-cyclodextrin solutions: application of McMillan–Mayer and Kirkwood–Buff theories. J. Phys. Chem. B 110, 18583–18593 (2006)CrossRefGoogle Scholar
  28. 28.
    Terdale, S.S., Dagade, D.H., Patil, K.J.: Activity coefficient studies in ternary aqueous solutions at 298.15 K: H2O + α-cyclodextrin + potassium acetate and H2O + 18-crown-6 + hydroquinone systems. J. Chem. Eng. Data 54, 294–300 (2009)CrossRefGoogle Scholar
  29. 29.
    Dagade, D.H., Kolhapurkar, R.R., Patil, K.J.: Studies of osmotic coefficients and volumetric behaviour on aqueous solutions of β− cyclodextine at 298.15 K. Indian J. Chem. 43A, 2073–2080 (2004)Google Scholar
  30. 30.
    Kolhapurkar, R., Patil, K.: Studies of volumetric and activity behaviors of binary and ternary aqueous solutions containing β-cyclodextrin and glucose. J. Mol. Liq. 178, 185–191 (2013)CrossRefGoogle Scholar
  31. 31.
    Cabani, S., Conti, G., Lapori, L.: Volumetric properties of aqueous solutions of organic compounds. I. Cyclic ethers and cyclic amines. J. Phys. Chem. 76, 1338–1343 (1972)CrossRefGoogle Scholar
  32. 32.
    Cabani, S., Mollica, V., Lapori, L., Lobo, S.T.: Volume changes in the proton ionization of amines in water. 1. Morpholines and piperazines. J. Phys. Chem. 81, 982–987 (1977)CrossRefGoogle Scholar
  33. 33.
    Kaulgud, M.V., Bhagde, V.S., Shrivastava, A.: Effect of temperature on the limiting excess volumes of amines in aqueous solution. J. Chem. Soc., Faraday Trans. I 78, 313–321 (1982)CrossRefGoogle Scholar
  34. 34.
    Shaikh, V.R., Dagade, D.H., Hundiwale, D.G., Patil, K.J.: Volumetric studies of aqueous solutions of local anesthetical drug compounds [hydrochlorides of procaine (PC·HCl), lidocaine (LC·HCl) and tetracaine (TC·HCl)] at 298.15 K. J. Mol. Liq. 164, 239–242 (2011)CrossRefGoogle Scholar
  35. 35.
    Fortier, J.L., Leduce, P.A., Desnoyers, J.E.: Thermodynamic properties of alkali halides. II. Enthalpies of dilution and heat capacities in water at 25°C. J. Solution Chem. 3, 323–349 (1974)CrossRefGoogle Scholar
  36. 36.
    Garrod, J.E., Herrington, T.M.: Apparent molar volumes and temperatures of maximum density of dilute aqueous sucrose solutions. J. Phys. Chem. 74, 363–370 (1970)CrossRefGoogle Scholar
  37. 37.
    Vaslow, F.: The apparent molal volumes of the alkali metal chlorides in aqueous solution and evidence for salt-induced structure transitions. J. Phys. Chem. 70, 2286–2294 (1966)CrossRefGoogle Scholar
  38. 38.
    Millero, F.J.: In: Horne, R.A. (ed.) Water and Aqueous Solutions Structure, Thermodynamics and Transport Processes, pp. 519–595. Wiley-Interscience, New York (1972)Google Scholar
  39. 39.
    Herrington, T.M., Mole, E.L.: Apparent molar volumes, temperatures of maximum density and osmotic coefficients of dilute aqueous hexamethylenetetramine solutions. J. Chem. Soc., Faraday Trans. I 78, 213–223 (1982)CrossRefGoogle Scholar
  40. 40.
    Cox, B.G., Knop, D., Schneider, H.: Kinetics of the protolysis of cryptands in basic aqueous solution. J. Am. Chem. Soc. 100, 6002–6007 (1978)CrossRefGoogle Scholar
  41. 41.
    Hoiland, H., Ringseth, J.A., Vikingstad, E.: Volume and compressibility changes of complex formation between 18-crown-6 and NaCl, KCl, and CsCl in water. J. Solution Chem. 7, 515–523 (1978)CrossRefGoogle Scholar
  42. 42.
    Hoiland, H., Ringseth, J.A., Brun, T.S.: Cation–crown ether complex formation in water. II. Alkali and alkaline earth cations and 12-crown-4, 15-crown-5, and 18-crown-6. J. Solution Chem. 8, 779–792 (1979)CrossRefGoogle Scholar
  43. 43.
    Jolicoeur, C., Lemelin, L.L., Lapalme, R.: Heat capacity of potassium-crown ether complexes in aqueous solution. Manifestations and quantitative treatment of important relaxational heat capacity effects. J. Phys. Chem. 83, 2806–2808 (1979)CrossRefGoogle Scholar
  44. 44.
    Desnoyers, J.E., Arel, M., Perron, G., Jolicoeur, C.: Apparent molal volumes of alkali halides in water at 25°C. Influence of structural hydration interactions on the concentration dependence. J. Phys. Chem. 73, 3346–3351 (1969)CrossRefGoogle Scholar
  45. 45.
    Zielenkiewicz, W., Kulikov, O.V., Kulis-Cwikla, I.: Excess enthalpies and apparent molar volumes of aqueous solutions of crown ethers and cryptand (222) at 25°C. J. Solution Chem. 22, 963–973 (1993)CrossRefGoogle Scholar
  46. 46.
    Ben-Naim, A.: Solvent induced interactions: hydrophobic and hydrophilic phenomena. J. Chem. Phys. 90, 7412–7425 (1989)CrossRefGoogle Scholar
  47. 47.
    Ben-Naim, A.: Strong forces between hydrophilic macromolecules: implications in biological systems. J. Chem. Phys. 93, 8196–8210 (1990)CrossRefGoogle Scholar
  48. 48.
    Friedman, H.L., Krishnan, C.V.: In: Franks, F. (ed.) Water A Comprehensive Treatise, vol. III, pp. 1–118. Plenum Press, New York (1973)Google Scholar
  49. 49.
    Redlich, O., Mayer, D.M.: The molal volumes of electrolytes. Chem. Rev. 64, 221–227 (1964)CrossRefGoogle Scholar
  50. 50.
    Cabani, S., Conti, G., Lapori, L., Leva, G.: Volumetric properties of aqueous solutions of organic compounds. II. Chloride salts of cyclic amines. J. Phys. Chem. 76, 1343–1347 (1972)CrossRefGoogle Scholar
  51. 51.
    Padova, J.: Ion–solvent interaction. II. Partial molar volume and electrostriction: a thermodynamic approach. J. Chem. Phys. 39, 1552–1557 (1963)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Vasim R. Shaikh
    • 1
  • Santosh S. Terdale
    • 2
  • A. Abdul
    • 1
  • Gaurav R. Gupta
    • 1
  • Dilip G. Hundiwale
    • 1
  • Kesharsingh J. Patil
    • 1
    Email author
  1. 1.School of Chemical SciencesNorth Maharashtra UniversityJalgaonIndia
  2. 2.Department of ChemistryUniversity of PunePuneIndia

Personalised recommendations