Advertisement

Journal of Solution Chemistry

, Volume 42, Issue 1, pp 1–17 | Cite as

Spectroscopic Studies on the Thermodynamics of the Complexation of Trivalent Curium with Propionate in the Temperature Range from 20 to 90 °C

  • Andrej SkerencakEmail author
  • Stefanie Höhne
  • Sascha Hofmann
  • Christian M. Marquardt
  • Petra J. Panak
Article

Abstract

The thermodynamics of the stepwise complexation reaction of Cm(III) with propionate was studied by time resolved laser fluorescence spectroscopy (TRLFS) and UV/Vis absorption spectroscopy as a function of the ligand concentration, the ionic strength and temperature (20–90 °C). The molar fractions of the 1:1 and 1:2 complexes were quantified by peak deconvolution of the emission spectra at each temperature, yielding the log10 \( K_{n}^{\prime } \) values. Using the specific ion interaction theory (SIT), the thermodynamic stability constants log10 \( K_{n}^{0} (T) \) were determined. The log10 \( K_{n}^{0} (T) \) values show a distinct increase by 0.15 (n = 1) and 1.0 (n = 2) orders of magnitude in the studied temperature range, respectively. The temperature dependency of the log10 \( K_{n}^{0} (T) \) values is well described by the integrated van’t Hoff equation, assuming a constant enthalpy of reaction and \( \Updelta_{\text{r}} C^\circ_{{p,{\text{m}}}} = 0, \) yielding the thermodynamic standard state \( \left( {\Updelta_{\text{r}} H^\circ_{\text{m}} ,\Updelta_{\text{r}} S^\circ_{\text{m}} ,\Updelta_{\text{r}} G^\circ_{\text{m}} } \right) \) values for the formation of the \( {\text{Cm(Prop)}}_{n}^{3 - n} \), n = (1, 2) species.

Keywords

Trivalent curium Laser spectroscopy Thermodynamics Complexation Organic ligand Propionate 

Notes

Acknowledgments

The authors would like to thank the German Federal Ministry of Economics and Technology (BMWi) for financial support of this work under contract No. 02E10206.

Supplementary material

10953_2012_9945_MOESM1_ESM.docx (144 kb)
Supplementary material 1 (DOCX 143 kb)

References

  1. 1.
    Final Report (2002) Arbeitskreis Auswahlverfahren Endlagerstandorte. W&S Druck GmbH, KölnGoogle Scholar
  2. 2.
    Courdouan, A., Christl, I., Meylan, S., Wersin, P., Kretzschmar, R.: Isolation and characterization of dissolved organic matter from the Callovo–Oxfordian formation. Appl. Geochem. 22, 1537–1548 (2007)CrossRefGoogle Scholar
  3. 3.
    Courdouan, A., Christl, I., Meylan, S., Wersin, P., Kretzschmar, R.: Characterization of dissolved organic matter in anoxic rock extracts and in situ pore water of Opalinus Clay. Appl. Geochem. 22, 2926–2939 (2007)CrossRefGoogle Scholar
  4. 4.
    Silva, R.J., Bidoglio, G., Rand, M.H., Robouch, P., Wanner, H., Puigdomenech, I.: Chemical Thermodynamics of Americium, vol. 2. OECD, NEA-TDB, Amsterdam (1995)CrossRefGoogle Scholar
  5. 5.
    Guillaumont, R., Fanghänel, T., Fuger, J., Grenthe, I., Neck, V., Palmer, D.A., Rand, M.H.: Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, vol. 5. Elsevier, Amsterdam (2003)Google Scholar
  6. 6.
    Klenze, R., Kim, J.I., Wimmer, H.: Speciation of aquatic actinide ions by pulsed laser spectroscopy. Radiochim. Acta 52/53, 97–103 (1991)Google Scholar
  7. 7.
    Edelstein, N.M., Klenze, R., Fanghänel, T., Hubert, S.: Optical properties of Cm(III) in crystals and solutions and their application to Cm(III) speciation. Coord. Chem. Rev. 250, 948–973 (2006)CrossRefGoogle Scholar
  8. 8.
    Wood, S.A.: The aqueous geochemistry of the rare-earth elements: critical stability constants for complexes with simple carboxylic acids at 25 °C and 1 bar and their application to nuclear waste management. Eng. Geol. 34, 229–259 (1993)CrossRefGoogle Scholar
  9. 9.
    Choppin, G.R., Graffeo, A.J.: Complexes of trivalent lanthanide and actinide ions. I. Outer-sphere ion pairs. Inorg. Chem. 4, 1254–1257 (1965)CrossRefGoogle Scholar
  10. 10.
    Wruck, D.A., Zhao, P., Palmer, C.E.A., Silva, R.J.: Stability quotients of neodymium acetate complexes from 20 to 70 °C by laser-induced photoacoustic spectroscopy. J. Solution Chem. 26, 267–275 (1997)CrossRefGoogle Scholar
  11. 11.
    Rao, L., Zanonato, P., Di Bernardo, P.: Interaction of actinides with carboxylates in solution: complexation of U(VI), Th(IV), and Nd(III) with acetate at variable temperatures. J. Nucl. Radiochem. Sci. 6, 31–37 (2005)Google Scholar
  12. 12.
    Zanonato, P., Di Bernardo, P., Bismondo, A., Rao, L., Choppin, G.R.: Thermodynamic studies of the complexation between neodymium and acetate at elevated temperatures. J. Solution Chem. 30, 1–18 (2001)CrossRefGoogle Scholar
  13. 13.
    Yeh, M., Riedner, T., Bray, K.L., Clark, S.B.: A spectroscopic investigation of temperature effects on solution complexation in the Eu3+–acetate system. J. Alloys Compd. 303–304, 37–41 (2000)CrossRefGoogle Scholar
  14. 14.
    Rao, L.: Thermodynamics of actinide complexation in solution at elevated temperatures: application of variable-temperature titration calorimetry. Chem. Soc. Rev. 36, 881–892 (2007)CrossRefGoogle Scholar
  15. 15.
    Kimura, T., Choppin, G.R.: Luminescence study on determination of the hydration number of Cm(III). J. Alloys Compd. 213/214, 313–317 (1994)CrossRefGoogle Scholar
  16. 16.
    Lindqvist-Reis, P., Klenze, R., Schubert, G., Fanghänel, Th.: Hydration of Cm3+ in aqueous solution from 20 to 200 °C. A TRLFS study. J. Phys. Chem. B 109, 3077–3083 (2005)CrossRefGoogle Scholar
  17. 17.
    Tian, G., Edelstein, N.M., Rao, L.: Spectroscopic properties and hydration of the Cm(III) aqua ion from 10 to 85 °C. J. Phys. Chem. A 115, 1933–1938 (2011)CrossRefGoogle Scholar
  18. 18.
    Chung, K.H., Klenze, R., Park, K.K., Paviet-Hartmann, P., Kim, J.I.: A study of the surface sorption process of Cm(III) on silica by time-resolved laser fluorescence spectroscopy (I). Radiochim. Acta 82, 215–219 (1998)Google Scholar
  19. 19.
    Skerencak, A., Panak, P.J., Hauser, W., Neck, V., Klenze, R., Lindqvist-Reis, P., Fanghänel, T.: TRLFS study on the complexation of Cm(III) with nitrate in the temperature range from 5 to 200 °C. Radiochim. Acta 97, 385–393 (2009)CrossRefGoogle Scholar
  20. 20.
    Skerencak, A., Panak, P.J., Neck, V., Trumm, M., Schimmelpfennig, B., Lindqvist-Reis, P., Klenze, R., Fanghänel, T.: Complexation of Cm(III) with fluoride in aqueous solutions in the temperature range from 20 to 90 °C. A joint TRLFS and quantum chemical study. J. Phys. Chem. B 114, 15626–15634 (2010)CrossRefGoogle Scholar
  21. 21.
    Kosmulski, M.: Chemical Properties of Material Surfaces. Marcel Dekker, Inc., New York (2001)CrossRefGoogle Scholar
  22. 22.
    Beitz, J.V., Hessler, J.P.: Oxidation state specific detection of transuranic ions in solution. Nucl. Technol. 51, 169–175 (1980)Google Scholar
  23. 23.
    Paviet, P., Fanghänel, T., Klenze, R., Kim, J.I.: Thermodynamics of curium(III) in concentrated electrolyte solutions: formation of sulfate complexes in NaCl/Na2SO4 solutions. Radiochim. Acta 74, 99–103 (1996)Google Scholar
  24. 24.
    Fanghänel, Th., Kim, J.I.: Spectroscopic evaluation of thermodynamics of trivalent actinides in brines. J. Alloys Compd. 271-273, 728–737 (1998)CrossRefGoogle Scholar
  25. 25.
    Majer, V., Sedlbauer, J., Hnedkovsky, L., Wood, R.H.: Thermodynamics of aqueous acetic and propionic acids and their anions over a wide range of temperatures and pressures. Phys. Chem. Chem. Phys. 2, 2907–2917 (2000)CrossRefGoogle Scholar
  26. 26.
    McRae, B.R., Patterson, B.A., Origlia-Luster, M.L., Sorenson, E.C., Woolley, E.M.: Thermodynamics of proton dissociation from aqueous 1-propanoic and 1-butanoic acids at temperatures 278.15 ≤ (T/K) ≤ 393.15 and pressure p = 0.35 MPa: apparent molar volumes and apparent molar heat capacities of aqueous solutions of the acids and their sodium salt. J. Chem. Thermodyn. 35, 301–329 (2003)CrossRefGoogle Scholar
  27. 27.
    Clayton, T.D., Byrne, R.H.: Spectrophotometric seawater pH measurements: total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results. Deep Sea Res. 40, 2115–2129 (1993)CrossRefGoogle Scholar
  28. 28.
    Yao, W., Byrne, R.H.: Spectrophotometric determination of freshwater pH using bromocresol purple and phenol red. Environ. Sci. Technol. 35, 1197–1201 (2001)CrossRefGoogle Scholar
  29. 29.
    Raghuraman, B., Gustavson, G., Mullins, O.C., Rabbito, P.: Spectroscopic pH measurement for high temperatures, pressures and ionic strengths. AIChE J. 52, 3257–3265 (2006)CrossRefGoogle Scholar
  30. 30.
    Yamazaki, H., Sperline, R.P., Freiser, H.: Spectrophotometric determination of pH and its application to determination of thermodynamic equilibrium constants. Anal. Chem. 64, 2720–2725 (1992)CrossRefGoogle Scholar
  31. 31.
    Pankow, J.F.: Aquatic Chemistry Concepts. Lewis Publisher, Inc. (2001)Google Scholar
  32. 32.
    Lee, S.T., Gin, J., Nampoori, V.P.N., Vallabhan, C.P.G., Unnikrishan, N.V., Radhakrishan, P.: A sensitive fibre optic pH sensor using multiple sol–gel coatings. J. Opt. A Pure Appl. Opt. 5, 355–359 (2001)CrossRefGoogle Scholar
  33. 33.
    Tremaine, P., Zhang, K., Bénézeth, P., Xiao, C.: Ionization equilibria of acids and bases. In: Palmer, D.A., Fernandez-Prini, R., Harvey, A.H. (eds.) Aqueous Systems at Elevated Temperatures and Pressures. Elsevier, Amsterdam (2004)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Andrej Skerencak
    • 1
    • 2
    Email author
  • Stefanie Höhne
    • 2
  • Sascha Hofmann
    • 1
  • Christian M. Marquardt
    • 1
  • Petra J. Panak
    • 2
  1. 1.KIT, Campus Nord, Institut für nukleare EntsorgungEggenstein-LeopoldshafenGermany
  2. 2.Ruprecht-Karls Universität HeidelbergHeidelbergGermany

Personalised recommendations