Journal of Solution Chemistry

, Volume 41, Issue 7, pp 1165–1184 | Cite as

Correlation of the Solubilizing Abilities of 1-Butyl-1-methylpiperidinium Bis(trifluoromethylsulfonyl)imide and 1-Butyl-1-methylpyrrolidinium Tetracyanoborate

  • Timothy W. Stephens
  • William E. AcreeJr.
  • Pamela Twu
  • Jared L. Anderson
  • Gary A. Baker
  • Michael H. Abraham
Article

Abstract

Chromatographic retention data were measured for a wide range of organic solutes on 1-butyl-1-methylpyrrolidinium tetracyanoborate ([BMPyrr]+[B(CN)4]) and 1-butyl-1-methyl-piperidinium bis(trifluoromethylsulfonyl)imide ([BMPip]+[Tf2N]) stationary phases at 323 K and 353 K. The measured retention factors were combined with published infinite dilution activity coefficient and gas-to-water partition coefficient data to yield gas-to-anhydrous ionic liquid (IL) and water-to-anhydrous IL partition coefficients. Both sets of partition coefficients were analyzed using the Abraham model. The derived Abraham model correlations describe the observed gas-to-IL (log10K) and water-to-IL (log10P) partition coefficient data to within average standard deviations of about 0.10 and 0.15 log10 units, respectively.

Keywords

Chromatographic retention factors Partition coefficients Ionic liquids Activity coefficients Linear free energy relationships 

References

  1. 1.
    Jin, H., O’Hare, B., Dong, J., Arzhantsev, S., Baker, G.A., Wishart, J.F., Benesi, A.J., Maroncelli, M.: Physical properties of ionic liquids consisting of the 1-butyl-3-methylimidazolium cation with various anions and the bis(trifluoromethylsulfonyl)imide anion with various cations. J. Phys. Chem. B 112, 81–92 (2008) CrossRefGoogle Scholar
  2. 2.
    Revelli, A.-L., Mutelet, F., Jaubert, J.-N.: Prediction of partition coefficients of organic compounds in ionic liquids: use of a linear solvation energy relationship with parameters calculated through a group contribution method. Ind. Eng. Chem. Res. 49, 3883–3892 (2010) CrossRefGoogle Scholar
  3. 3.
    Meindersma, G.W., Galan Sanchez, L.M., Hansmeier, A.R., De Haan, A.B.: Application of task-specific ionic liquids for intensified separation. Monatsh. Chem. 138, 1125–1136 (2007) CrossRefGoogle Scholar
  4. 4.
    Acree, W.E. Jr., Abraham, M.H.: The analysis of solvation in ionic liquids and organic solvents using the Abraham linear free energy relationship. J. Chem. Technol. Biotechnol. 81, 1441–1446 (2006) [Erratum: J. Chem. Technol. Biotechnol. 81, 1722 (2006)] CrossRefGoogle Scholar
  5. 5.
    Abraham, M.H., Acree, W.E. Jr.: Comparative analysis of solvation and selectivity in room temperature ionic liquids using the Abraham linear free energy relationship. Green Chem. 8, 906–915 (2006) CrossRefGoogle Scholar
  6. 6.
    Mintz, C., Acree, W.E. Jr.: Partition coefficient correlations for transfer of solutes from gas phase and water to room temperature ionic liquids. Phys. Chem. Liq. 45, 241–249 (2007) CrossRefGoogle Scholar
  7. 7.
    Sprunger, L.M., Acree, W.E. Jr., Abraham, M.H.: Linear free energy relationship correlations for the solubilising characterisation of room temperature ionic liquids containing 1-hexyloxymethyl-3-methylimidazolium and 1,3-dihexyloxymethylimidazolium cations. Phys. Chem. Liq. 48, 394–402 (2010) CrossRefGoogle Scholar
  8. 8.
    Moise, J.-C., Mutelet, F., Jaubert, J.-N., Grubbs, L.M., Acree, W.E. Jr., Baker, G.A.: Activity coefficients at infinite dilution of organic compounds in four new imidazolium-based ionic liquids. J. Chem. Eng. Data 56, 3106–3114 (2011) CrossRefGoogle Scholar
  9. 9.
    Sprunger, L.M., Acree, W.E. Jr., Abraham, M.H.: Linear free energy relationship (LFER) correlations for the solubilising characterisation of room temperature ionic liquids containing triethylsulphonium and 1-butyl-1-methylpyrrolidinium cations. Phys. Chem. Liq. 48, 385–393 (2010) CrossRefGoogle Scholar
  10. 10.
    Grubbs, L.M., Ye, S., Saifullah, M., Acree, W.E. Jr., Twu, P., Anderson, J.L., Baker, G.A., Abraham, M.H.: Correlation of the solubilizing abilities of hexyl(trimethyl)ammonium bis(trifluoromethylsulfonyl)imide, 1-propyl-1-methylpiperidinium bis((trifluoromethyl)sulfonyl)imide and 1-butyl-1-methyl-pyrrolidinium thiocyanate. J. Solution Chem. 40, 2000–2022 (2011) CrossRefGoogle Scholar
  11. 11.
    Mutelet, F., Revelli, A.-L., Jaubert, J.-N., Sprunger, L.M., Acree, W.E. Jr., Baker, G.A.: Partition coefficients of organic compounds in new imidazolium and tetralkylammonium based ionic liquids using inverse gas chromatography. J. Chem. Eng. Data 55, 234–242 (2010) CrossRefGoogle Scholar
  12. 12.
    Sprunger, L.M., Gibbs, J., Baltazar, Q.Q., Acree, W.E. Jr., Abraham, M.H., Anderson, J.L.: Characterisation of room temperature ionic liquid chromatographic stationary phases by combining experimental retention factor and partition coefficient data into a single model. Phys. Chem. Liq. 47, 74–83 (2009) CrossRefGoogle Scholar
  13. 13.
    Proctor, A., Sprunger, L.M., Acree, W.E. Jr., Abraham, M.H.: LFER correlations for the solubilising characterisation of room temperature ionic liquids containing trifluoromethanesulfonate and trifluoroacetate anions. Phys. Chem. Liq. 46, 631–642 (2008) CrossRefGoogle Scholar
  14. 14.
    Revelli, A.-L., Mutelet, F., Jaubert, J.-N., Garcia-Martinez, M., Sprunger, L.M., Acree, W.E. Jr., Baker, G.A.: Study of ether-, alcohol-, or cyano-functionalized ionic liquids using inverse gas chromatography. J. Chem. Eng. Data 55, 2434–2443 (2010) CrossRefGoogle Scholar
  15. 15.
    Revelli, A.-L., Sprunger, L.M., Gibbs, J., Acree, W.E. Jr., Baker, G.A., Mutelet, F.: Activity coefficients at infinite dilution of organic compounds in trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide using inverse gas chromatography. J. Chem. Eng. Data 54, 977–985 (2009) CrossRefGoogle Scholar
  16. 16.
    Grubbs, L.M., Saifullah, M., De La Rosa, N.E., Acree, W.E. Jr., Abraham, M.H., Zhao, Q., Anderson, J.L.: Cation-specific and anion-specific Abraham model correlations for solute transfer into ionic liquids. Glob. J. Phys. Chem. 1, 1–19 (2010) Google Scholar
  17. 17.
    Grubbs, L.M., Ye, S., Saifullah, M., McMillan-Wiggins, M.C., Acree, W.E. Jr., Abraham, M.H., Twu, P., Anderson, J.L.: Correlations for describing gas-to-ionic liquid partitioning at 323 K based on ion-specific equation coefficient and group contribution versions of the Abraham model. Fluid Phase Equilib. 301, 257–266 (2011) CrossRefGoogle Scholar
  18. 18.
    Abraham, M.H., Zissimos, A.M., Huddleston, J.G., Willauer, H.D., Rogers, R.D., Acree, W.E. Jr.: Some novel liquid partitioning systems: water–ionic liquids and aqueous biphasic systems. Ind. Eng. Chem. Res. 42, 413–418 (2003) CrossRefGoogle Scholar
  19. 19.
    Sprunger, L., Clark, M., Acree, W.E. Jr., Abraham, M.H.: Characterization of room-temperature ionic liquids by the Abraham model with cation-specific and anion-specific equation coefficients. J. Chem. Inf. Model. 47, 1123–1129 (2007) CrossRefGoogle Scholar
  20. 20.
    Sprunger, L.M., Proctor, A., Acree, W.E. Jr., Abraham, M.H.: LFER correlations for room temperature ionic liquids: separation of equation coefficients into individual cation-specific and anion-specific contributions. Fluid Phase Equilib. 265, 104–111 (2008) CrossRefGoogle Scholar
  21. 21.
    Sprunger, L.M., Gibbs, J., Proctor, A., Acree, W.E. Jr., Abraham, M.H., Meng, Y., Yao, C., Anderson, J.L.: Linear free energy relationship correlations for room temperature ionic liquids: revised cation-specific and anion-specific equation coefficients for predictive applications covering a much larger area of chemical space. Ind. Eng. Chem. Res. 48, 4145–4154 (2009) CrossRefGoogle Scholar
  22. 22.
    Mutelet, F., Ortega-Villa, V., Moise, J.-C., Jaubert, J.N., Acree, W.E. Jr.: Prediction of partition coefficients of organic compounds in ionic liquids using temperature-dependent linear solvation energy relationship with parameters calculated through group contribution method. J. Chem. Eng. Data 56, 3598–3606 (2011) CrossRefGoogle Scholar
  23. 23.
    Domańska, U., Królikowski, M., Acree, W.E. Jr.: Thermodynamics and activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 1-butyl-1-methylpyrrolidinium tetracyanoborate. J. Chem. Thermodyn. 43, 1810–1817 (2011) CrossRefGoogle Scholar
  24. 24.
    Paduszynski, K., Domanska, U.: Limiting activity coefficients and gas–liquid partition coefficients of various solutes in piperidinium ionic liquids: measurements and LSER calculations. J. Phys. Chem. B 115, 8207–8215 (2011) CrossRefGoogle Scholar
  25. 25.
    Burrell, A.K., Del Sesto, R.E., Baker, S.N., McCleskey, T.M., Baker, G.A.: The large scale synthesis of pure imidazolium and pyrrolidinium ionic liquids. Green Chem. 9, 449–454 (2007) CrossRefGoogle Scholar
  26. 26.
    Baltazar, Q.Q., Leininger, S.K., Anderson, J.L.: Binary ionic liquid mixtures as gas chromatography stationary phases for improving the separation selectivity of alcohols and aromatic compounds. J. Chromatogr. A 1182, 119–127 (2008) CrossRefGoogle Scholar
  27. 27.
    Abraham, M.H., Andonian-Haftvan, J., Whiting, G.S., Leo, A., Taft, R.W.: Hydrogen bonding. Part 34. The factors that influence the solubility of gases and vapors in water at 298 K, and a new method for its determination. J. Chem. Soc., Perkin Trans. 2 1777–1791 (1994) Google Scholar
  28. 28.
    Abraham, M.H., Ibrahim, A., Acree, W.E. Jr.: Partition of compounds from gas to water and from gas to physiological saline at 310 K: linear free energy relationships. Fluid Phase Equilib. 251, 93–109 (2007) CrossRefGoogle Scholar
  29. 29.
    Abraham, M.H., Ibrahim, A., Zissimos, A.M.: Determination of sets of solute descriptors from chromatographic measurements. J. Chromatogr. A 1037, 29–47 (2004) CrossRefGoogle Scholar
  30. 30.
    Zissimos, A.M., Abraham, M.H., Barker, M.C., Box, K.J., Tam, K.Y.: Calculation of Abraham descriptors from solvent–water partition coefficients in four different systems; evaluation of different methods of calculation. J. Chem. Soc., Perkin Trans. 2 470–477 (2002) Google Scholar
  31. 31.
    Zissimos, A.M., Abraham, M.H., Du, C.M., Valko, K., Bevan, C., Reynolds, D., Wood, J., Tam, K.Y.: Calculation of Abraham descriptors from experimental data from seven HPLC systems; evaluation of five different methods of calculation. J. Chem. Soc., Perkin Trans. 2 2001–2010 (2002) Google Scholar
  32. 32.
    Cabani, S., Gianni, P., Mollica, V., Lepori, L.: Group contributions to the thermodynamic properties of nonionic organic solutes in dilute aqueous solution. J. Solution Chem. 10, 563–595 (1981) CrossRefGoogle Scholar
  33. 33.
    Dohanyosova, P., Sarraute, S., Dohnal, V., Majer, V., Gomes, M.C.: Aqueous solubility and related thermodynamic functions of nonaromatic hydrocarbons as a function of molecular structure. Ind. Eng. Chem. Res. 43, 2805–2815 (2004) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Timothy W. Stephens
    • 1
  • William E. AcreeJr.
    • 1
  • Pamela Twu
    • 2
  • Jared L. Anderson
    • 2
  • Gary A. Baker
    • 3
  • Michael H. Abraham
    • 4
  1. 1.Department of ChemistryUniversity of North TexasDentonUSA
  2. 2.Department of ChemistryThe University of ToledoToledoUSA
  3. 3.Department of ChemistryUniversity of Missouri-ColumbiaColumbiaUSA
  4. 4.Department of ChemistryUniversity College LondonLondonUK

Personalised recommendations