Journal of Solution Chemistry

, Volume 41, Issue 1, pp 130–142

Dissociation Constants of Protonated Amines in Water at Temperatures from 293.15 K to 343.15 K

  • M. R. Simond
  • K. Ballerat-Busserolles
  • Y. Coulier
  • L. Rodier
  • J.-Y. Coxam
Article

Abstract

The dissociation constants of protonated 2-amino-1-ethanol (MEA), diethanol amine (DEA), triethanol amine (TEA), methyldiethanol amine (MDEA), 2-amino-2-methyl-1-propanol (AMP), 3-dimethylamino-1-propanol (DMAP), tris(hydromethyl)aminomethane (THAM), 2-[2-(dimethylamino)ethoxy]ethanol (DMAEOE) and, 1,2-bis(2-aminoethoxy)ethane (DiAEOE) were determined in the temperature range 293.15 to 343.15 K using a potentiometric titration method. The experimental technique was first validated using as reference the available literature data of MDEA. The dissociation enthalpies of amines were derived from their dissociation constants using the Van’t Hoff equation. Experimental dissociation constants and dissociation enthalpies were discussed in term of amine structure and compared with literature values when available.

Keywords

Alkanolamine Ethoxyamine Dissociation constant Dissociation enthalpy Potentiometry 

Abbreviations

Symbols

K

dissociation constant

ΔdH

standard enthalpies of dissociation

ρw

volumic mass of pure water

A,B,C

adjustable parameters for Eq. 8

a

activity

γ

activity coefficient

m

molality

c

molarity

n

mole number

n0

initial mole number

z

charge number

k

ionic radius parameter

T

temperature

AD,BD

Debye–Hückel constants

I

ionic strength

σ,s

standard deviation

Subscripts

Am

amine

AmH+

protonated amine

H+

hydrogen ion

OH

hydroxide ion

Cl

chloride ion

w

water

References

  1. 1.
    Lecomte, F., Broutin, P., Lebas, E.: CO2 Capture, Technologies to Reduce Greenhouse Gas Emissions. TECHNIP, Paris (2010) Google Scholar
  2. 2.
    Arcis, H., Rodier, L., Ballerat-Busserolles, K., Coxam, J.-Y.: Enthalpy of solution of CO2 in aqueous solutions of methyldiethanolamine at T=322.5 K and pressure up to 5 MPa. J. Chem. Thermodyn. 40, 1022–1029 (2008) CrossRefGoogle Scholar
  3. 3.
    Arcis, H., Rodier, L., Ballerat-Busserolles, K., Coxam, J.-Y.: Enthalpy of solution of CO2 in aqueous solutions of methyldiethanolamine at T=372.9 K and pressures up to 5 MPa. J. Chem. Thermodyn. 41, 836–841 (2009) CrossRefGoogle Scholar
  4. 4.
    Arcis, H., Rodier, L., Ballerat-Busserolles, K., Coxam, J.-Y.: Modeling of (vapor + liquid) equilibrium and enthalpy of solution of carbon dioxide (CO2) in aqueous methyldiethanolamine (MDEA) solutions. J. Chem. Thermodyn. 41, 783–789 (2009) CrossRefGoogle Scholar
  5. 5.
    Kim, I., Hoff, K.A., Hessen, E.T., Haug-Warberg, T., Svendsen, H.F.: Enthalpy of absorption of CO2 with alkanolamine solutions predicted from reaction equilibrium constants. Chem. Eng. Sci. 64, 2027–2038 (2009) CrossRefGoogle Scholar
  6. 6.
    Oscarson, J.L., Wu, G., Faux, P.W., Izatt, R.M., Christensen, J.J.: Thermodynamics of protonation of alkanolamines in aqueous solution to 325 °C. Thermochim. Acta 154, 119–127 (1989) CrossRefGoogle Scholar
  7. 7.
    Schwabe, K., Graichen, W., Spiethoff, D.: Physicochemical investigations on alkanolamines. Z. Phys. Chem. 20, 68–82 (1959) CrossRefGoogle Scholar
  8. 8.
    Littel, R.J., Bos, M., Knoop, G.J.: Dissociation-constants of some alkanolamines at 293-K, 303-K, 318-K, and 333-K. J. Chem. Eng. Data 35, 276–277 (1990) CrossRefGoogle Scholar
  9. 9.
    Perez-Salado Kamps, A., Maurer, G.: Dissociation constant of N-methyldiethanolamine in aqueous solution at temperatures from 278 K to 368 K. J. Chem. Eng. Data 41, 1505–1513 (1996) CrossRefGoogle Scholar
  10. 10.
    Hamborg, E.S., Niederer, J.P.M., Versteeg, G.F.: Dissociation constants and thermodynamic properties of amino acids used in CO2 absorption from (293 to 353) K. J. Chem. Eng. Data 52, 2491–2502 (2007) CrossRefGoogle Scholar
  11. 11.
    Hamborg, E.S., Versteeg, G.F.: Dissociation constants and thermodynamic properties of amines and alkanolamines from (293 to 353) K. J. Chem. Eng. Data 54, 1318–1328 (2009) CrossRefGoogle Scholar
  12. 12.
    Coulier, Y., Ballerat-Busserolles, K., Rodier, L., Coxam, J.Y.: Temperatures of liquid–liquid separation and excess molar volumes of {N-methylpiperidine–water} and {2-methylpiperidine–water} systems. Fluid Phase Equilib. 296, 206–212 (2010) CrossRefGoogle Scholar
  13. 13.
    Manov, G.G., Bates, R.G., Hamer, W.J., Acree, S.F.: Values of the constants in the Debye–Hückel equation for activity coefficients 1. J. Am. Chem. Soc. 65, 1765–1767 (1943) CrossRefGoogle Scholar
  14. 14.
    Kielland, J.: Individual activity coefficients of ions in aqueous solutions. J. Am. Chem. Soc. 59, 1675–1678 (1937) CrossRefGoogle Scholar
  15. 15.
    Edwards, T.J., Maurer, G., Newman, J., Prausnitz, J.M.: Vapor–liquid equilibria in multicomponent aqueous solutions of volatile weak electrolytes. AIChE J. 24, 966–976 (1978) CrossRefGoogle Scholar
  16. 16.
    Hill, P.G.: A unified fundamental equation for the thermodynamic properties of H2O. J. Phys. Chem. Ref. Data 19, 1233–1274 (1990) CrossRefGoogle Scholar
  17. 17.
    Bates, R.G., Schwarzenbach, G.: Triathanolamin als puffersubstanz. Helv. Chim. Acta 37, 1437–1439 (1954) CrossRefGoogle Scholar
  18. 18.
    Bates, R.G., Allen, G.F.: Acidic dissociation constants and related thermodynamic quantities for triethanolammonium ion in water from 0 to 50 °C. J. Res. Natl. Bur. Stand., A Phys. Chem. 64, 343 (1960) Google Scholar
  19. 19.
    Bates, R.G., Pinching, G.D.: Acidic dissociation constant and related thermodynamic quantities for monoethanolammonium ion in water from 0 °C to 50 °C. J. Res. Natl. Bur. Stand. 46, 349–352 (1951) Google Scholar
  20. 20.
    Datta, S.P., Grzybowski, A.K.: Acid dissociation constants of ammonium group in 2-aminoethanol, 2-aminoethyl phosphate, and 2-aminoethyl sulphate. J. Chem. Soc. 3068–3075 (1962) Google Scholar
  21. 21.
    Ford, T.D., Call, T.G., Origlia, M.L., Stark, M.A., Woolley, E.M.: Apparent molar volumes and apparent molar heat capacities of aqueous 2-amino-2-hydroxymethyl-propan-1,3-diol (Tris of THAM) and THAM plus equimolal HCl. J. Chem. Thermodyn. 32, 499–516 (2000) CrossRefGoogle Scholar
  22. 22.
    Blauwhoff, P.M., Bos, M.: Dissociation-constants of diethanolamine and diisopropanolamine in an aqueous 1.00-M KCl solution. J. Chem. Eng. Data 26, 7–8 (1981) CrossRefGoogle Scholar
  23. 23.
    Chremos, G.N., Zimmerman, H.K.: Protolysis equilibria of N-substituted diethanolamines. Z. Phys. Chem. (Frankfurt/Main) 35, 129–132 (1962) CrossRefGoogle Scholar
  24. 24.
    Bower, V.E., Robinson, R.A., Bates, R.G.: Acidic dissociation constant and related thermodynamic quantities for diethanolammonium ion in water from 0 to 50 °C. J. Res. Natl. Bur. Stand., A Phys. Chem. 66, 71–75 (1962) Google Scholar
  25. 25.
    Bjerrum, J., Schwarzenbach, G., Sillen, L.G.: Organic ligands. In: Stability Constants, Part I, Special Publication No. 6. The Chemical Society, London (1957) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • M. R. Simond
    • 1
    • 2
  • K. Ballerat-Busserolles
    • 1
    • 2
  • Y. Coulier
    • 1
    • 2
  • L. Rodier
    • 1
    • 2
  • J.-Y. Coxam
    • 1
    • 2
  1. 1.Laboratoire de Thermodynamique et Interactions MoléculairesClermont Université, Université Blaise PascalClermont-FerrandFrance
  2. 2.Laboratoire de Thermodynamique et Interactions Moléculaires, CNRSUMR 6272AubiereFrance

Personalised recommendations