Journal of Solution Chemistry

, Volume 40, Issue 12, pp 2072–2081 | Cite as

N-Alkylamines-Based Micelles Aggregation Number Determination by Fluorescence Techniques

  • G. Astray
  • A. Cid
  • J. A. Manso
  • J. C. Mejuto
  • O. Moldes
  • J. Morales
  • J. Quintás
Article

Abstract

Aggregation numbers of micelles based on N-alkylamines and mixed systems CTACl/N-alkylamines have been determined using fluorescence techniques. The values of aggregation number are compared as a function of hydrocarbon chain length and as a function of the molar fraction in the mixed systems.

Keywords

Micelles Mixed Micelles Alkylamines Aggregation number 

References

  1. 1.
    Holland, P.M., Rubingh, D.N.: Mixed Surfactant Systems. American Chemical Society, Washington, DC (1992) CrossRefGoogle Scholar
  2. 2.
    Christian, S.D., Scamehorn, J.F.: Solubilization in Surfactant Aggregates, vol. 55. Dekker, New York (1995) Google Scholar
  3. 3.
    Ogino, K., Abe, M.: Mixed Surfactant Systems. Dekker, New York (1993) Google Scholar
  4. 4.
    Aungst, B.J., Phang, S.: Metabolism of a neurotensin (8–13) analog by intestinal and nasal enzymes, and approaches to stabilize this peptide at these absorption sites. Int. J. Pharm. 117, 95–100 (1995) CrossRefGoogle Scholar
  5. 5.
    Muranushi, N., Kinugawa, M., Nakajima, Y., Muranishi, S., Sekazi, H.: Mechanism for the inducement of the intestinal absorption of poorly absorbed drugs by mixed micelles. I. Effects of various lipid-bile salt mixed micelles on the intestinal absorption of streptomycin in rat. Int. J. Pharm. 4, 271–279 (1980) CrossRefGoogle Scholar
  6. 6.
    Muranushi, N., Kinugawa, M., Nakajima, Y., Muranishi, S., Sekazi, H.: Mechanism for the inducement of the intestinal absorption of poorly absorbed drugs by mixed micelles. II. Effect of the incorporation of various lipids on the permeability of liposomal membranes. Int. J. Pharm. 4, 281–290 (1980) CrossRefGoogle Scholar
  7. 7.
    García, M.T., Ribosa, I., Leal, J.S., Comelles, F.: Monomer-micelle equilibrium in the diffusion of surfactants in binary systems through collagen films. J. Am. Oil Chem. Soc. 69, 25–29 (1992) CrossRefGoogle Scholar
  8. 8.
    Prottey, C., Ferguson, T.: Factors which determine the skin irritation potential of soaps and detergents. J. Soc. Cosmet. Chem. Japan 26, 29–46 (1975) Google Scholar
  9. 9.
    Rhein, L.D., Simion, F.A., Hill, R.L., Cagan, R.H., Mattai, J., Maibach, H.I.: Human cutaneous response to a mixed surfactant system: role of solution phenomena in controlling surfactant irritation. Dermatologica 180, 18–23 (1990) CrossRefGoogle Scholar
  10. 10.
    Kibbey, T.C.G., Hayes, K.F.: Multicomponent analysis of the sorption of polydisperse ethoxylated nonionic surfactants to aquifer materials: equilibrium sorption behavior. Environ. Sci. Technol. 31, 1171–1177 (1997) CrossRefGoogle Scholar
  11. 11.
    Rosen, M.J., Cohen, A.W., Dahanayake, M., Hua, X.Y.: Relationship of structure to properties in surfactants. 10. Surface and thermodynamic properties of 2-dodecyloxypoly(ethenoxyethanol)s, C12H25(OC2H4)xOH, in aqueous solution. J. Phys. Chem. 86, 541–545 (1982) CrossRefGoogle Scholar
  12. 12.
    Ueno, M., Kimoto, Y., Ikeda, Y., Momose, H., Zana, R.: Study on the aggregation number of mixed micelles in aqueous binary mixtures of the bile salts and nonionic surfactant. J. Colloid Interface Sci. 117, 179–186 (1987) CrossRefGoogle Scholar
  13. 13.
    Zana, R., Muto, Y., Esumi, K., Meguro, K.: Mixed micelle formation between alkyltrimethylammonium bromide and alkane-α,ω-bis(trimethylammonium) bromide in aqueous solution. J. Colloid Interface Sci. 123, 502–511 (1988) CrossRefGoogle Scholar
  14. 14.
    Jana, P.K., Moulik, S.P.: Employment of a useful liquid membrane electrode system to characterise the micelles of bile salts and other detergents in pure and mixed states. Colloid Polym. Sci. 272, 837–845 (1994) CrossRefGoogle Scholar
  15. 15.
    Furuya, H., Moroi, Y., Sugihara, G.: Micelle formation of binary-mixtures of dodecylammonium perfluoro carboxylates. Langmuir 11, 774–778 (1995) CrossRefGoogle Scholar
  16. 16.
    Attwood, D., Mosquera, V., Novas, L., Sarmiento, F.: Micellization in binary mixtures of amphiphilic drugs. J. Colloid Interface Sci. 179, 478–481 (1996) CrossRefGoogle Scholar
  17. 17.
    Moulik, S.P., Haque, M.E., Jana, P.K., Das, A.R.: Micellar properties of cationic surfactants in pure and mixed states. J. Phys. Chem. 100, 701–708 (1996) CrossRefGoogle Scholar
  18. 18.
    Ghosh, S., Moulik, S.P.: Interfacial and micellization behaviors of binary and ternary mixtures of amphiphiles (Tween-20, Brij-35, and sodium dodecyl sulfate) in aqueous medium. J. Colloid Interface Sci. 208, 357–366 (1998) CrossRefGoogle Scholar
  19. 19.
    López-Fontán, J.L., Suárez, M.J., Mosquera, V., Sarmiento, F.: Micellar behaviour of n-alkyl sulfates in binary mixed systems. J. Colloid Interface Sci. 223, 185–189 (2000) CrossRefGoogle Scholar
  20. 20.
    Attwood, D., Patel, H.K.: Mixed micelles of alkyltrimethylammonium bromides and chlorhexidine digluconate in aqueous solution. J. Colloid Interface Sci. 129, 222–230 (1989) CrossRefGoogle Scholar
  21. 21.
    Treiner, C., Makayssi, A.: Structural micellar transition for dilute solutions of long chain binary cationic surfactant systems: a conductance investigation. Langmuir 8, 794–800 (1992) CrossRefGoogle Scholar
  22. 22.
    López-Fontán, J.L., Suárez, M.J., Mosquera, V., Sarmiento, F.: Mixed micelles of n-alkyltrimethylammonium bromides: influence of alkyl chain length. Phys. Chem. Chem. Phys. 1, 3583–3587 (1999) CrossRefGoogle Scholar
  23. 23.
    Junquera, E., Aicart, E.: Mixed micellization of dodecylethyldimethylammonium bromide and dodecyltrimethylammonium bromide in aqueous solution. Langmuir 18, 9250–9258 (2002) CrossRefGoogle Scholar
  24. 24.
    Junquera, E., Ortega, F., Aicart, E.: Aggregation process of the mixed ternary system dodecylethyldimethylammonium bromide/dodecylpyridinium chloride/H2O: an experimental and theoretical approach. Langmuir 19, 4923–4932 (2003) CrossRefGoogle Scholar
  25. 25.
    Mirgorodskaya, A.B., Kudryavtseva, L.A., Ivanov, B.E.: The influence of the micellization of n-decylamine on its basicity and reactivity toward the esters of carboxylic acids. Izv. Akad. Nauk Ser. Khim. 366–370 (1996) Google Scholar
  26. 26.
    Bakeeva, R.F., Fedorov, S.B., Kudryavtseva, L.A., Bel’skii, V.E., Ivanov, B.E.: Colloidal properties of aqueous solutions of partially protonated long-chain amines. Colloid J. USSR 46, 664–666 (1984) Google Scholar
  27. 27.
    Mirgorodskaya, A.B., Kudryavtseva, L.A., Zakharova, L.Y., Bel’skii, V.E.: Interaction between primary aliphatic amines and carboxylic acid esters in aqueous micellar solutions of cationic surfactants. Russ. Chem. Bull. 47, 1296–1301 (1998) CrossRefGoogle Scholar
  28. 28.
    Mirgorodskaya, A.B., Kudryavtseva, L.A., Zuev, Y.F., Archipov, V.P., Idiyatullin, Z.Sh.: Catalysis of the hydrolysis of phosphorus acids esters by the mixed micelles of long-chain amines and cetylpyridinium bromide. Mendeleev Commun. 196–198 (1999) Google Scholar
  29. 29.
    Mirgorodskaya, A.B., Kudryavtseva, L.A., Zuev, Y.F., Archipov, V.P., Kudryavtsev, D.B.: The influence of hydrophobic amines on hydrolysis of bis(p-nitrophenyl) methylphosphonate in micellar solutions of cetylpyridinium bromide. Russ. Chem. Bull. 49, 270–275 (2000) CrossRefGoogle Scholar
  30. 30.
    Mirgorodskaya, A.B., Kudryavtseva, L.A., Zuev, Y.F., Vylegzhanina, N.N.: Effect of micellar surfactant solutions on the reactivity of long-chain amines. Zh. Fiz. Khim. 76, 2033–2037 (2002) Google Scholar
  31. 31.
    García-Río, L., Hervés, P., Leis, J.R., Mejuto, J.C., Rodríguez-Dafonte, P.: Reactive micelles: nitroso group transfer from N-methyl-N-nitroso-p-toluenesulfonamide to amphiphilic amines. J. Phys. Org. Chem. 17, 1067–1072 (2004) CrossRefGoogle Scholar
  32. 32.
    Griesser, F., Drummond, C.J.: The physicochemical properties of self-assembled surfactant aggregates as determined by some molecular spectroscopic probe techniques. J. Phys. Chem. 92, 5580–5593 (1988) CrossRefGoogle Scholar
  33. 33.
    Kalyanasundaram, K.: Photochemistry in Microheterogeneous Systems. Academic Press, Orlando (1987) Google Scholar
  34. 34.
    Mejuto, J.C., Mosquera, M., Ríos, A.M., Rodríguez-Prieto, M.F.: Fluorescence quenching in microheterogeneous media: a laboratory experiment determining micelle aggregation number. J. Chem. Educ. 72, 662–663 (1995) CrossRefGoogle Scholar
  35. 35.
    Ebeid, E.Z.M.: Fluorescence quenching of acridinium ions in sodium dodecyl sulfate micelles. J. Chem. Educ. 62, 165–166 (1985) CrossRefGoogle Scholar
  36. 36.
    Allinger, N.L.: Molecular Mechanics. American Chemical Society, Washington (1982) Google Scholar
  37. 37.
    Turro, N.J., Yekta, A.: Luminescent probes for detergent solutions. A simple procedure for determination of the mean aggregation number of micelles [7]. J. Am. Chem. Soc. 100, 5951–5952 (1978) CrossRefGoogle Scholar
  38. 38.
    Fendler, J.H., Fendlerm, E.J.: Catalysis in Micellar and Macromolecular Systems. Academic Press, New York (1975) Google Scholar
  39. 39.
    Burrows, H.D., Formosinho, S.J.: Uranyl luminescence quenching: an experiment in photochemistry and kinetics. J. Chem. Educ. 55, 125–126 (1978) CrossRefGoogle Scholar
  40. 40.
    García-Río, L., Leis, J.R., Mejuto, J.C., Mosquera, V., Rodríguez-Dafonte, P.: Stability of mixed micelles of cetylpyridinium chloride and linear primary alkylamines. Colloids Surf. A 309, 216–223 (2007) CrossRefGoogle Scholar
  41. 41.
    Okano, L.T., Quina, F.H., El Seoud, O.A.: Fluorescence and light-scattering studies of the aggregation of cationic surfactants in aqueous solution: effects of headgroup structure. Langmuir 16, 3119–3123 (2000) CrossRefGoogle Scholar
  42. 42.
    García-Río, L., Leis, J.R., López-Fontán, J.L., Mejuto, J.C., Mosquera, V., Rodríguez-Dafonte, P.: Mixed micelles of alkylamines and cetyltrimethylammonium chloride. J. Colloid Interface Sci. 289, 521–529 (2005) CrossRefGoogle Scholar
  43. 43.
    Israelachvili, J.: Intermolecular and Surface Forces. Academic Press, New York (1991) Google Scholar
  44. 44.
    Das Burman, A., Dey, T., Mukherjee, B., Das, A.R.: Solution properties of the binary and ternary combination of sodium dodecyl benzene sulfonate, polyoxyethylene sorbitan monolaurate, and polyoxyethylene lauryl ether. Langmuir 16, 10020–10027 (2000) CrossRefGoogle Scholar
  45. 45.
    Bakeeva, R.F., Fedorov, S.B., Kudryavtseva, L.A., Bel’skii, V.E., Ivanov, B.E.: Colloidal properties of aqueous solutions of partially protonated long-chain amines. Colloid J. USSR 46, 664–666 (1984) Google Scholar
  46. 46.
    Abu-Hamdiyyah, M., Rahman, I.A.: Strengthening of hydrophobic bonding and the increase in the degree of micellar ionization by amphiphiles and the micelle-water distribution coefficient as a function of the surfactant chain length in sodium alkyl sulfates. J. Phys. Chem. 89, 2377–2384 (1985) CrossRefGoogle Scholar
  47. 47.
    Carnero-Ruiz, C., Aguiar, J.: Interaction, stability, and microenvironmental properties of mixed micelles of Triton Xl00 and n-alkyltrimethylammonium bromides: influence of alkyl chain length. Langmuir 16, 7946–7953 (2000) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • G. Astray
    • 1
  • A. Cid
    • 1
  • J. A. Manso
    • 1
  • J. C. Mejuto
    • 1
  • O. Moldes
    • 1
  • J. Morales
    • 1
  • J. Quintás
    • 1
  1. 1.Departamento de Química Física, Facultade de CienciasUniversidade de VigoOurenseSpain

Personalised recommendations