Journal of Solution Chemistry

, Volume 39, Issue 6, pp 747–769 | Cite as

Evidence of Different Stoichiometries for the Limiting Carbonate Complexes across the Lanthanide(III) Series

  • V. PhilippiniEmail author
  • T. Vercouter
  • P. Vitorge


The stoichiometries of limiting carbonate complexes of lanthanide(III) ions were investigated by solubility measurements of hydrated NaLn(CO3)2 solid compounds (Ln = La, Nd, Eu and Dy) at room temperature in aqueous solutions of high ionic strength (3.5 mol⋅kg−1 NaClO4) and high \(\mathrm{CO_{3}^{2-}}\) concentrations (0.1 to 1.5 mol⋅kg−1). The results were interpreted by considering the stability of carbonate complexes, with limiting species found to be \(\mathrm{La(CO_{3})_{4}^{5-}}\), \(\mathrm{Nd(CO_{3})_{4}^{5-}}\), \(\mathrm{Eu(CO_{3})_{3}^{3-}}\) and \(\mathrm{Dy(CO_{3})_{3}^{3-}}\). TRLFS measurements on the Eu and Dy solutions confirmed the predominance of a single aqueous complex in all the samples. Equilibrium constants were determined for the reaction \(\mathrm{Ln(CO_{3})_{3}^{3-}}+\mathrm{CO_{3}^{2-}}\)\(\mathrm{Ln(CO_{3})_{4}^{5-}}\): \(\log_{10}K\mathrm{^{3.5m\:NaClO_{4}}_{4,La}=0.7\pm0.3}\), \(\log_{10}K\mathrm{^{3.5m\:NaClO_{4}}_{4,Nd}=1.3\pm0.3}\), and for Ln = Eu and Dy, \(\log_{10}K\mathrm{^{3.5m\:NaClO_{4}}_{4,Ln}\leq-0.4}\). These results suggest that tetracarbonato complexes are stable only for the light lanthanide ions in up to 1.5 molal \(\mathrm{CO_{3}^{2-}}\) aqueous solutions, in agreement with our recent capillary electrophoresis study. Comparison with literature results indicates that analogies between actinide(III) and lanthanide(III) ions of similar ionic radii do not hold in concentrated carbonate solutions. \(\mathrm{Am(CO_{3})_{3}^{3-}}\) was previously evidenced by solubility measurements, whereas we have observed that \(\mathrm{Nd(CO_{3})_{4}^{5-}}\) predominates in similar conditions. We may speculate that small chemical differences between Ln(III) and An(III) could result in macroscopic differences when their coordination sphere is complete.


Complex Carbonate Lanthanides Solubility TRLFS SIT 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allard, B., Banwart, S., Bruno, J., Ephram, J., Grauer, R., Grenthe, I., Hadermann, J., Hummel, W., Jakob, A., Karapiperis, T., Plyasunov, A., Puigdomenech, I., Rard, J., Saxena, S., Spahiu, K.: Modeling in Aquatic Chemistry. Elsevier, Amsterdam (1997) Google Scholar
  2. 2.
    Vitorge, P., Phrommavanh, V., Siboulet, B., You, D., Vercouter, T., Descostes, M., Marsden, C., Beaucaire, C., Gaudet, J.P.: Estimating the stabilities of actinide aqueous species. Influence of sulfoxy-anions on uranium(IV) geochemistry and discussion of Pa(V) first hydrolysis. C. R. Chim. 10, 978–993 (2007) Google Scholar
  3. 3.
    Silva, R., Bidoglio, G., Rand, M., Robouch, P., Wanner, H., Puigdomenech, I.: Chemical Thermodynamics of Americium. Elsevier, Amsterdam (1995) Google Scholar
  4. 4.
    Fuger, J., Nitsche, H., Potter, P., Rand, M., Rydberg, J., Spahiu, K., Sullivan, J., Ullman, W., Vitorge, P., Wanner, H.: Chemical Thermodynamics of Neptunium and Plutonium. Elsevier, Amsterdam (2001) Google Scholar
  5. 5.
    Guillaumont, R., Fanghanel, T., Neck, V., Fuger, J., Palmer, D., Grenthe, I., Rand, M.: Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium. Elsevier, Amsterdam (2003) Google Scholar
  6. 6.
    Grenthe, I., Fuger, J., Konongs, R.J., Lemire, R.J., Muller, A., Nguyen-Trung, C., Wanner, H.: Chemical Thermodynamics of Uranium. Elsevier, Amsterdam (1992) Google Scholar
  7. 7.
    Chatt, A., Rao, R.: Complexation of europium(III) with carbonate ions in groundwater. Mater. Res. Soc. Symp. Proc. 127, 897–904 (1989) Google Scholar
  8. 8.
    Rao, R., Chatt, A.: Studies on stability constants of europium(III) carbonate complexes and application of SIT and ion-pairing models. Radiochim. Acta 54, 181–188 (1991) Google Scholar
  9. 9.
    Dumonceau, J.: Stabilité des tétracarbonatolanthanidates III: application à l’étude des carbonates complexes mixtes. Ph.D. thesis, Reims University, France (1979) Google Scholar
  10. 10.
    Dumonceau, J., Bigot, S., Treuil, M., Faucherre, J., Fromage, F.: Détermination des constantes de formation des tétracarbonatolanthanidatesIII. C. R. Acad. Sci. Paris 287, 325–327 (1978) Google Scholar
  11. 11.
    Dumonceau, J., Bigot, S., Treuil, M., Faucherre, J., Fromage, F.: Détermination des constantes de formation des tétracarbonatolanthanidates(III). Rev. Chim. Miner. 16, 583–592 (1979) Google Scholar
  12. 12.
    Bidoglio, G.: Characterization of AmIII complexes with bicarbonate and carbonate ions at groundwater concentration levels. Radiochem. Radioanal. Lett. 53, 45–60 (1982) Google Scholar
  13. 13.
    Lundqvist, R.: Hydrophilic complexes of the actinides. I. Carbonates of trivalent americium and europium. Acta Chem. Scand. A 36, 741–750 (1982) CrossRefGoogle Scholar
  14. 14.
    Cantrell, K., Byrne, R.: Rare earth element complexation by carbonate and oxalate ions. Geochim. Cosmochim. Acta 51, 597–605 (1987) CrossRefGoogle Scholar
  15. 15.
    Cantrell, K., Byrne, R.: Temperature dependence of europium carbonate complexation. J. Solution Chem. 16, 555–566 (1987) CrossRefGoogle Scholar
  16. 16.
    Rao, R., Chatt, A.: Characterization of europiumIII carbonate complexes in simulated groundwater by solvent extraction. J. Radioanal. Nucl. Chem. 124, 211–225 (1988) CrossRefGoogle Scholar
  17. 17.
    Lee, J., Byrne, R.: Complexation of trivalent rare earth elements (Ce, Eu, Gd, Tb, Yb) by carbonate ions. Geochim. Cosmochim. Acta 57, 295–302 (1993) CrossRefGoogle Scholar
  18. 18.
    Liu, X., Byrne, R.: Comprehensive investigation of yttrium and rare earth element complexation by carbonate ions using ICP mass spectrometry. J. Solut. Chem. 27, 803–815 (1998) CrossRefGoogle Scholar
  19. 19.
    Faucherre, J., Fromage, F., Gobron, R.: Préparation à l’état solide et structure en solution des carbonates complexes de lanthanides. Rev. Chim. Miner. 3, 953–991 (1966) Google Scholar
  20. 20.
    Ferri, D., Grenthe, I., Hietanen, S., Salvatore, F.: Studies on metal carbonate equilibria. 5. The cerium(III)carbonate complexes in aqueous perchlorate-media. Acta Chem. Scand. A 37, 359–365 (1983) CrossRefGoogle Scholar
  21. 21.
    Rao, L., Rai, D., Felmy, A., Fulton, R., Novak, C.: Solubility of NaNd(CO3)3⋅6H2O(c) in concentrated Na2CO3 and NaHCO3 solutions. Radiochim. Acta 75, 141–147 (1996) Google Scholar
  22. 22.
    Vercouter, T., Vitorge, P., Trigoulet, N., Giffaut, E., Moulin, C.: \(\mathrm{Eu(CO_{3})_{3}^{3-}}\) and the limiting carbonate complexes of other M3+ f-elements in aqueous solutions: a solubility and TRLFS study. New J. Chem. 29, 544–553 (2005) CrossRefGoogle Scholar
  23. 23.
    Robouch, P.: Contribution à la prévision du comportement de l’américium, du plutonium et du neptunium dans la géosphère; données chimiques. Ph.D. thesis, Louis Pasteur University, Strasbourg, France (1987) Google Scholar
  24. 24.
    Giffaut, E.: Influence des ions chlorure sur la chimie des actinides. Effets de la radiolyse et de la température. Ph.D. thesis, Paris Sud XI University, France (1994) Google Scholar
  25. 25.
    Ruzaikina, L., Marov, I., Ryabukhin, V., Ermakov, A., Filimova, V.: Investigation of the complexing of europium with carbonate ions. Zh. Anal. Khim. 33, 1082–1088 (1978) Google Scholar
  26. 26.
    Fridman, Y., Dolgashova, N.: Fluoride carbonates of the rare-earth elements. Russ. J. Inorg. Chem. 9, 345–350 (1964) Google Scholar
  27. 27.
    Poluektov, N., Kononenko, L.: Spectrophotometric investigation of carbonato-complexes of the rare-earth elements. Russ. J. Inorg. Chem. 6, 938–941 (1961) Google Scholar
  28. 28.
    Fanghanel, T., Weger, H., Konnecke, T., Paviet-Hartmann, V.N.P., Steinle, E., Kim, J.: Thermodynamics of Cm(III) in concentrated electrolyte solutions. Carbonate complexation at constant ionic strength (1 m NaCl). Radiochim. Acta 82, 47–53 (1998) Google Scholar
  29. 29.
    Fanghanel, T., Konnecke, T., Weger, H., Paviet-Hartmann, P., Neck, V., Kim, J.: Thermodynamics of Cm(III) in concentrated salt solutions: Carbonate complexation in NaCl solution at 25 °C. J. Solution Chem. 28, 447–462 (1999) CrossRefGoogle Scholar
  30. 30.
    Vercouter, T.: Complexes aqueux de lanthanidesIII et actinidesIII avec les ions carbonate et sulfate. Etude thermodynamique par spectrofluorimétrie laser résolue en temps et spectrométrie de masse à ionisation électrospray. Ph.D. thesis, Evry University, France (2005) Google Scholar
  31. 31.
    Vercouter, T., Vitorge, P., Amekraz, B., Giffaut, E., Hubert, S., Moulin, C.: Stabilities of the aqueous complexes \(\mathrm{Cm(CO_{3})_{3}^{3-}}\) and \(\mathrm{Am(CO_{3})_{3}^{3-}}\) in the temperature range 10–70 °C. Inorg. Chem. 44, 5833–5843 (2005) CrossRefGoogle Scholar
  32. 32.
    Dumonceau, J., Bigot, S., Treuil, M., Faucherre, J., Fromage, F.: Etude spectrophotométrique des tétracarbonatolanthanidates III. C. R. Acad. Sci. Paris 289, 165–166 (1979) Google Scholar
  33. 33.
    Thompson, S., Byrne, R.: Indicator ligands in metal complexation studies: role of 4-(2-pyridylazo)resorcinol in europium carbonate equilibrium investigations. Anal. Chem. 60, 19–22 (1988) CrossRefGoogle Scholar
  34. 34.
    Meinrath, G., Kim, J.: The carbonate complexation of Am(III) ion. Radiochim. Acta 52–53, 29–34 (1991) Google Scholar
  35. 35.
    Lee, J., Byrne, R.: Examination of comparative rare earth element complexation behavior using linear free-energy relationships. Geochim. Cosmochim. Acta 56, 1127–1137 (1992) CrossRefGoogle Scholar
  36. 36.
    Wimmer, H., Kim, J., Klenze, R.: A direct speciation of CmIII in natural aquatic systems by time-resolved laser-induced fluorescence spectroscopy (TRLFS). Radiochim. Acta 58–59, 165–171 (1992) Google Scholar
  37. 37.
    Kim, J., Klenze, R., Wimmer, H., Runde, W., Hauser, W.: A study of carbonate complexation of Cm(III) and Eu(III) by time-resolved laser fluorescence spectroscopy. J. Alloys Compd. 213–214, 333–340 (1994) CrossRefGoogle Scholar
  38. 38.
    Wruck, D., Palmer, C., Silva, R.: A study of americiumIII carbonate complexation at elevated temperatures by pulsed laser photoacoustic spectroscopy. Radiochim. Acta 85, 21–24 (1999) Google Scholar
  39. 39.
    Ciavatta, L., Ferri, D., Grenthe, I., Salvatore, F., Spahiu, K.: Studies on metal carbonate equilibria. 3. The lanthanum(III) carbonate complexes in aqueous perchlorate media. Acta Chem. Scand. A 35, 403–413 (1981) CrossRefGoogle Scholar
  40. 40.
    Millero, F.: Stability constants for the formation of rare earth inorganic complexes as a function of ionic strength. Geochim. Cosmochim. Acta 56, 3123–3132 (1992) CrossRefGoogle Scholar
  41. 41.
    Ohta, A., Kawabe, I.: Rare earth element partitioning between Fe oxyhydroxide precipitates and aqueous NaCl solutions doped with NaHCO3: Determinations of rare earth element complexation constants with carbonate ions. Geochem. J. 34, 439–454 (2000) Google Scholar
  42. 42.
    Allen, P., Bucher, J., Shuh, D., Edelstein, N., Craig, I.: Coordination chemistry of trivalent lanthanide and actinide ions in dilute and concentrated chloride solutions. Inorg. Chem. 39, 595–601 (2000) CrossRefGoogle Scholar
  43. 43.
    Ishiguro, S.I., Umebayashi, Y., Kato, K., Takahashi, R., Ozutsumi, K.: Strong and weak solvation steric effects on lanthanoid(III) ions in N,N-dimethylformamide-N,N-dimethylacetamide mixtures. J. Chem. Soc. Faraday Trans. 94, 3607–3612 (1998) CrossRefGoogle Scholar
  44. 44.
    Solera, J., Garcéa, J., Proietti, M.: Multielectron excitations at the L edges in rare-earth ionic aqueous solutions. Phys. Rev. B 51, 2678–2686 (1995) CrossRefGoogle Scholar
  45. 45.
    Yamaguchi, T., Nomura, M., Wakita, H., Ohtaki, H.: An extended X-ray absorption fine structure study of aqueous rare earth perchlorate solutions in liquid and glassy states. J. Chem. Phys. 89, 5153–5159 (1988) CrossRefGoogle Scholar
  46. 46.
    Duvail, M., Vitorge, P., Spezia, R.: Building a polarizable pair interaction potential for lanthanoids(III) in liquid water: A molecular dynamics study of structure and dynamics of the whole series. J. Chem. Phys. 130, 104501.1–104501.13 (2009) CrossRefGoogle Scholar
  47. 47.
    Philippini, V.: Mise en évidence d’un changement de stœchiométrie du complexe carbonate limite au sein de la série des lanthanides(III). Ph.D. thesis, Paris-sud XI University, France (2007) Google Scholar
  48. 48.
    Philippini, V., Vercouter, T., Aupiais, J., Topin, S., Ambard, C., Chaussé, A., Vitorge, P.: Evidence of different stoichiometries for the limiting carbonate complexes across the lanthanide(III) series: a capillary electrophoresis-mass spectrometry study. Electrophoresis 29, 2041–2050 (2008) CrossRefGoogle Scholar
  49. 49.
    Runde, W., Pelt, C.V., Allen, P.: Spectroscopic characterization of trivalent f-element (Eu, Am) solid carbonates. J. Alloys Compd. 303–304, 182–190 (2000) CrossRefGoogle Scholar
  50. 50.
    Clark, D., Donohoe, R., Gordon, J., Gordon, P., Keogh, D., Scott, B., Tait, C., Watkin, J.: First single-crystal X-ray diffraction study of a lanthanide tricarbonate complex: [Co(NH3)6][Sm(CO3)3(H2O)]⋅4H2O. J. Chem. Soc. Dalton 13, 1975–1977 (2000) Google Scholar
  51. 51.
    Bond, D., Clark, D., Donohoe, R., Gordon, J., Gordon, P., Keogh, D., Scott, B., Tait, C., Watkin, J.: A new structural class of lanthanide carbonates: synthesis, properties and X-ray structure of the one-dimensional chain complex \(\mathrm{[Co(NH_{3})_{6}]_{6}[K_{2}(H_{2}O)_{10}]\mbox{--}[Nd_{2}(CO_{3})_{3}]_{2}]}\)⋅20H2O. Inorg. Chem. 39, 3934–3937 (2000) CrossRefGoogle Scholar
  52. 52.
    Bond, D., Clark, D., Donohoe, R., Gordon, J., Gordon, P., Keogh, D., Scott, B., Tait, C., Watkin, J.: A model for trivalent actinides in media containing high carbonate concentrations—structural characterization of the lanthanide tetracarbonate [Co(NH3)6][Na(μ−H2O)(H2O)4]2[Ho(CO3)4]⋅4H2O. Eur. J. Inorg. Chem. 11, 2921–2926 (2001) CrossRefGoogle Scholar
  53. 53.
    Vitorge, P.: Am(OH)3(s), AMOHCO3(s), Am2(CO3)3(s) stabilities in environmental-conditions. Radiochim. Acta 58–59, 105–107 (1992) Google Scholar
  54. 54.
    Philippini, V., Vercouter, T., Chaussé, A., Vitorge, P.: Precipitation of ALn(CO3)2⋅xH2O and Dy2(CO3)3⋅xH2O compounds from aqueous solutions for \(\mathrm{A^{+}=Li^{+},Na^{+},K^{+},Cs^{+},NH_{4}^{+}}\) and Ln3+=La3+,Nd3+,Eu3+,Dy3+. J. Solid State Chem. 181, 2143–2154 (2008) CrossRefGoogle Scholar
  55. 55.
    Baes, C., Mesmer, R.: The Hydrolysis of Cations. Wiley, New York (1976) Google Scholar
  56. 56.
    Ivanov-Emin, B., Siforova, E., Fisher, M., Kampos, V.M.: The solubility of certain lanthanide hydroxides in aqueous sodium hydroxide solutions. Russ. J. Inorg. Chem. 11, 258–260 (1966) Google Scholar
  57. 57.
    Ivanov-Emin, B., Siforova, E., Kampos, V.M., Lafert, E.B.: Solubility of some lanthanide hydroxides in sodium hydroxide solutions. Russ. J. Inorg. Chem. 11, 1054–1055 (1966) Google Scholar
  58. 58.
    Fatin-Rouge, N., Bunzli, J.: Thermodynamic and structural study of inclusion complexes between trivalent lanthanide ions and native cyclodextrins. Inorg. Chim. Acta 293, 53–60 (1999) CrossRefGoogle Scholar
  59. 59.
    Stokes, R.: Thermodynamics of solutions. In: Activity Coefficients in Electrolyte Solutions, vol. 1. CRC Press, Boca Raton (1979) Google Scholar
  60. 60.
    Vercouter, T., Vitorge, P., Amekraz, B., Moulin, C.: Stoichiometries and thermodynamic stabilities for aqueous sulfate complexes of U(VI). Inorg. Chem. 47, 2180–2189 (2008) CrossRefGoogle Scholar
  61. 61.
    Lide, D.: CRC Handbook of Chemistry and Physics, 83th edn. CRC Press, Boca Raton (2002) Google Scholar
  62. 62.
    Berthoud, T., Decambox, P., Kirsch, B., Mauchien, P., Moulin, C.: Direct determination of traces of lanthanide ions in aqueous-solutions by laser-induced time-resolved spectrofluorimetry. Anal. Chim. Acta 220, 235–241 (1989) CrossRefGoogle Scholar
  63. 63.
    Nagaishi, R., Kimura, T., Sinha, S.: Luminescence properties of lanthanideIII ions in concentrated carbonate solution. Mol. Phys. 101, 1007–1014 (2003) CrossRefGoogle Scholar
  64. 64.
    Horrocks, W., Sudnick, D.: Lanthanide ion probes of structure in biology. Laser-induced luminescence decay constants provide a direct measure of the number of metal-coordinated water molecules. J. Am. Chem. Soc. 101, 334–340 (1979) CrossRefGoogle Scholar
  65. 65.
    Zhang, P., Kimura, T., Yoshida, Z.: Luminescence study on the inner-sphere hydration number of lanthanide(III) ions in neutral organo-phosphorus complexes. Solvent Extr. Ion Exch. 22, 933–945 (2004) CrossRefGoogle Scholar
  66. 66.
    Runde, W., Kim, J.: Chemisches Verhalten von drei-und funfwertigem Americium in Salinen NaCl-Losungen. Technical Report RCM-01094, Technische Universitat München (1994) Google Scholar
  67. 67.
    Felmy, A., Rai, D., Fulton, R.: The solubility of AmOHCO3(c) and the aqueous thermodynamics of the system Na+–Am3+\(\mathrm{HCO}_{3}^{-}\)\(\mathrm{CO}_{3}^{2-}\)–OH–H2O. Radiochim. Acta 50, 193–204 (1990) Google Scholar
  68. 68.
    Kutlu, I., Kalz, H.J., Wartchow, R., Ehrhardt, H., Seidel, H., Meyer, G.: Kalium-Lanthanoid-Carbonate, KM(CO3)2 (M=Nd, Gd, Dy, Ho, Yb). Z. Anorg. Allg. Chem. 623, 1753–1758 (1997) CrossRefGoogle Scholar
  69. 69.
    Shannon, R.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976) CrossRefGoogle Scholar
  70. 70.
    David, F., Fourest, B.: Structure of trivalent lanthanide and actinide aquo ions. New J. Chem. 21, 167–176 (1997) Google Scholar
  71. 71.
    Kimura, T., Kato, Y.: Luminescence study on the inner-sphere hydration number of lanthanideIII ions in concentrated aqueous salt solutions in fluid and frozen states. J. Alloys Compd. 278, 92–97 (1998) CrossRefGoogle Scholar
  72. 72.
    Klungness, G., Byrne, R.: Comparative hydrolysis behavior of the rare earths and yttrium: the influence of temperature and ionic strength. Polyhedron 19, 99–107 (2000) CrossRefGoogle Scholar
  73. 73.
    Offerlé, S., Capdevila, H., Vitorge, P.: Np(VI)/Np(V) en milieu carbonate concentré. Technical Report CEA-N-2785 CEA, Gif-Sur-Yvette (1995) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.CEA Saclay DEN/DPC/SECR Laboratoire de spéciation des radionucléides et des moléculesGif-sur-YvetteFrance
  2. 2.Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement UMR 8587, Bâtiment MaupertuisUniversité d’Evry Val d’Essonne—CNRSEvry cedexFrance
  3. 3.Laboratoire de Radiochimie, Sciences Analytiques et Environnement (LRSAE), Institut de Chimie de Nice (ICN)Université de Nice Sophia-AntipolisNice Cedex 2France

Personalised recommendations