Journal of Solution Chemistry

, Volume 39, Issue 4, pp 543–558 | Cite as

The Formation of Cu(II) Complexes with Carbonate and Bicarbonate Ions in NaClO4 Solutions

  • Frank J. Millero
  • J. Magdalena Santana-Casiano
  • Melchor González-Dávila


The inorganic behavior of most divalent metals in natural waters is affected by the formation of carbonate complexes. The acidification of the oceans will lower the carbonate concentration in the oceans. This will increase the concentration of free copper that is toxic to marine organisms. To be able to determine the effect of this acidification, reliable stability constants are needed for the formation of copper carbonate complexes. In this paper, the speciation of Cu(II) with bicarbonate and carbonate ions
$$\begin{array}{rcl}&&\mathrm{Cu}^{2+}+\mathrm{HCO}_{3}^{-}\rightleftharpoons \mathrm{CuCO}_{3(\mathrm{aq})}+\mathrm{H}^{+}\\[4pt]&&\mathrm{Cu}^{2+}+2\mathrm{HCO}_{3}^{-}\rightleftharpoons \mathrm{Cu}(\mathrm{CO}_{3})_{2}^{2-}+2\mathrm{H}^{+}\\[4pt]&&\mathrm{Cu}^{2+}+\mathrm{CO}_{3}^{2-}\rightleftharpoons \mathrm{CuCO}_{3(\mathrm{aq})}\\[4pt]&&\mathrm{Cu}^{2+}+2\mathrm{CO}_{3}^{2-}\rightleftharpoons \mathrm{Cu}(\mathrm{CO}_{3})_{2}^{2-}\\[4pt]&&\mathrm{Cu}^{2+}+\mathrm{HCO}_{3}^{-}\rightleftharpoons \mathrm{CuHCO}_{3}^{+}\end{array}$$
is investigated as a function of ionic strength and temperature in NaClO4 solutions.

To fully examine the system, the dissociation of carbonic acid in the media were examined using the Pitzer equations in NaClO4 solutions to 6.5 mol⋅kg−1 at 25 °C. With this foundation, the stability constants for the formation of Cu(II) carbonate complexes were used to determine the activity coefficients for the complexes (\(\mathrm{CuHCO}_{3}^{+}\), CuCO3, \(\mathrm{Cu}(\mathrm{CO}_{3})_{2}^{2-})\). Pitzer parameters for these complexes were determined at 25 °C and ionic strength (0 to 1.1 mol⋅kg−1) in NaClO4 solutions. Since the formation of Cu(II) carbonate complexes appear to be linearly related to the values for other metals, it is possible to use the correlations to estimate the carbonate constants for a number of other divalent metals.


Cu(II) Metals Carbonato complexes Speciation Pitzer equations Carbonic acid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Millero, F.J., Hawke, D.J.: Ionic interactions of divalent metals in natural waters. Mar. Chem. 40, 19–48 (1992) CrossRefGoogle Scholar
  2. 2.
    Millero, F.J., Pierrot, D.: Speciation of metals in natural waters. In: Gianguzza, A., Pellizzetti, E., Sammartano, S. (eds.) Chemistry of Marine Water and Sediments, pp. 193–220. Springer, Berlin (2002) Google Scholar
  3. 3.
    Brand, L.E., Sunda, W.G., Guillard, R.R.L.: Reduction of marine phytoplankton reproduction rates by copper and cadmium. J. Exp. Mar. Biol. Ecol. 96, 225–250 (1986) CrossRefGoogle Scholar
  4. 4.
    Millero, F.J., Woosley, R., DiTrolio, B., Waters, J.: The effect of ocean acidification on the speciation of metals in natural waters, Oceanography (2009, in press) Google Scholar
  5. 5.
    Harvie, C.E., Møller, N., Weare, J.H.: The prediction of mineral solubilities in natural waters: The Na–K–Mg–Ca–H–Cl–SO4–OH–HCO3–CO3–CO3–H2O system to high ionic strengths at 25 °C. Geochim. Cosmochim. Acta 48, 723–752 (1984) CrossRefGoogle Scholar
  6. 6.
    Harvie, C.E., Weare, J.H.: The prediction of mineral solubilities in natural waters: the Na–K–Mg–Ca–SO4–Cl–H2O system from zero to high concentration at 25 °C. Geochim. Cosmochim. Acta 44, 981–997 (1980) CrossRefGoogle Scholar
  7. 7.
    Millero, F.J., Pierrot, D.: A chemical model for natural waters. Aquat. Geochem. 4, 153–199 (1998) CrossRefGoogle Scholar
  8. 8.
    Byrne, R.H., Miller, W.L.: Copper(II) carbonate complexation in seawater. Geochim. Cosmochim. Acta 49, 1837–1844 (1985) CrossRefGoogle Scholar
  9. 9.
    Soli, A.L., Byrne, R.H.: Temperature dependence of Cu(II) complexation in natural seawater. Limnol. Oceanogr. 34, 239–244 (1989) CrossRefGoogle Scholar
  10. 10.
    Fanghänel, Th., Neck, V., Kim, J.I.: The ion product of H2O, dissociation constants of H2CO3 and Pitzer parameters in the system \(\mathrm{Na}^{+}/\mathrm{H}^{+}/\mathrm{OH}^{-}/\mathrm{HCO}_{3}^{-}/\mathrm{CO}_{3}^{2-}/\mathrm{ClO}_{4}^{-}/\mathrm{H}_{2}\mathrm{O}\) at 25 °C. J. Solution Chem. 25, 327–343 (1996) CrossRefGoogle Scholar
  11. 11.
    Powell, K.J., Brown, P.L., Byrne, L.H., Gajda, T., Glenn, H., Staffan, S., Wanner, H.: Chemical speciation of environmentally significant heavy metals with inorganic ligands. Part 1: The Hg2+-Cl, OH, \(\mathrm{CO}_{3}^{2-}\), \(\mathrm{SO}_{4}^{2-}\), and \(\mathrm{PO}_{4}^{3-}\) aqueous systems. Pure Appl. Chem. 77, 739–800 (2005) CrossRefGoogle Scholar
  12. 12.
    Powell, K.J., Brown, P.L., Byrne, R.H., Gajda, T., Hefter, G., Sjöberg, S., Wanner, H.: Chemical speciation of environmentally significant metals with inorganic ligands. Part 2: The Cu2+-OH, Cl, \(\mathrm{SO}_{4}^{2-}\), and \(\mathrm{PO}_{4}^{3-}\) systems. Pure Appl. Chem. 79, 895–950 (2007) CrossRefGoogle Scholar
  13. 13.
    Pitzer, K.S.: Ion interaction approach: theory and data collection. In: Pitzer, K.S. (ed.) Activity Coefficients in Electrolyte Solutions, 2nd edn., vol. I, pp. 75–153. CRC, Boca Raton (1991) Google Scholar
  14. 14.
    Møller, N.: The prediction of mineral solubilities in natural waters: a chemical equilibrium model for the Na–Ca–Cl–SO4–H2O system, to high temperature and concentration. Geochim. Cosmochim. Acta 52, 821–837 (1988) CrossRefGoogle Scholar
  15. 15.
    Millero, F.J., Huang, F., Graham, T., Pierrot, D.: The dissociation of carbonic acid in NaCl solutions as a function of concentration and temperature. Geochim. Cosmochim. Acta 71, 46–55 (2007) CrossRefGoogle Scholar
  16. 16.
    Königsberger, E., Schmidt, P., Gamsjäger, H.: Solid-solute phase equilibria in aqueous solution. VI. Solubilities, complex formation, and ion-interactions parameters for the system Na+–Mg2+–ClO4–CO2–H2O at 25 °C. J. Solution Chem. 21, 1195–1216 (1992) CrossRefGoogle Scholar
  17. 17.
    Peiper, J.C., Pitzer, K.S.: Thermodynamics of aqueous carbonate solutions including mixtures of sodium carbonate, bicarbonate and chloride. J. Chem. Thermodyn. 14, 613–638 (1982) CrossRefGoogle Scholar
  18. 18.
    Bruno, J., Stumm, W., Wersin, P., Brandberg, F.: On the influence of carbonate in mineral dissolution. Part I. The thermodynamics and kinetics of hematite dissolution in bicarbonate solutions at T=25°C. Geochim. Cosmochim. Acta 56, 1139–1147 (1992) CrossRefGoogle Scholar
  19. 19.
    Bruno, J., Wersin, P., Stumm, W.: On the influence of carbonate in mineral dissolution. II. The solubility of FeCO3(s) at 25 °C and 1 atm total pressure. Geochim. Cosmochim. Acta 56, 1149–1155 (1992) CrossRefGoogle Scholar
  20. 20.
    Frydman, M., Nilsson, G., Rengemo, T., Sillen, L.G.: Some solution equilibria involving calcium sulfite and carbonate: III. The acidity constants of H2CO3 and H2 SO3 and CaCO3-CaSO3 equilibria in NaClO4 medium at 25 °C. Acta Chem. Scand. 12, 868–872 (1958) CrossRefGoogle Scholar
  21. 21.
    Riese, N.W., Gamsjäger, H., Schindler, P.W.: Complex formation in the ternary system Mg(II) CO2 H2O. Geochim. Cosmochim. Acta 41, 1193–1200 (1989) CrossRefGoogle Scholar
  22. 22.
    Brucher, E., Glaser, J., Toth, I.: Carbonate exchange for the complex \(\mathrm{UO}_{2}(\mathrm{CO}_{3})_{3}^{4-}\) in aqueous solution as studied by 13C NMR spectroscopy. Inorg. Chem. 30, 2239–2241 (1991) CrossRefGoogle Scholar
  23. 23.
    Ciavatta, L., Ferri, D., Grenthe, I., Salvatore, F., Spahiu, K.: Studies on metal carbonate equilibria: 3. The lanthanum (III) carbonate complexes in aqueous perchlorate media. Acta Chem. Scand. A 35, 403–413 (1981) CrossRefGoogle Scholar
  24. 24.
    Ferri, D., Grenthe, I., Hietanen, S., Neker-Neumann, E., Salvatore, F.: Studies on metal carbonate equilibria: 12: Zinc II-carbonate complexes in acid solution. Acta Chem. Scand. A 39, 347–353 (1985) CrossRefGoogle Scholar
  25. 25.
    Grenthe, I., Ferri, D., Salvatore, F., Riccio, G.: Studies on metal carbonate equilibria. Part 10. A solubility study of the complex formation in uranium(VI)-water-carbon dioxide(g) system at 25 °C. J. Chem. Soc. Dalton Trans. 11, 2439–2443 (1984) CrossRefGoogle Scholar
  26. 26.
    Harned, H.S., Bonner, F.T.: The first ionization of carbonic acid in aqueous solutions of sodium chloride. J. Am. Chem. Soc. 67, 1026–1031 (1945) CrossRefGoogle Scholar
  27. 27.
    Harned, H.S., Scholes, S.R.: The ionization constants of \(\mathrm{HCO}_{3}^{-}\) from 0 to 50°C. J. Am. Chem. Soc. 63, 1706–1709 (1941) CrossRefGoogle Scholar
  28. 28.
    Santana-Casiano, J.M., González-Dávila, M., Millero, F.J.: The examination of the activity coefficients of Cu(II) complexes with OH and Cl in NaClO4 using the Pitzer equations: applicability to other divalent cations. J. Solution Chem. 37, 749–762 (2008) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Frank J. Millero
    • 1
  • J. Magdalena Santana-Casiano
    • 2
  • Melchor González-Dávila
    • 2
  1. 1.Rosenstiel School of Marine and Atmospheric Science, Marine and Atmospheric ChemistryUniversity of MiamiCoral CablesUSA
  2. 2.Department of ChemistryUniversity of Las Palmas Gran CanariaLas Palmas Gran CanariaSpain

Personalised recommendations