Journal of Solution Chemistry

, Volume 38, Issue 10, pp 1267–1282 | Cite as

Aqueous Long-Term Solubility of Titania Nanoparticles and Titanium(IV) Hydrolysis in a Sodium Chloride System Studied by Adsorptive Stripping Voltammetry

  • Jochen SchmidtEmail author
  • Wolfram Vogelsberger


The solubility of industrially produced titanium dioxide nanoparticles has been studied in aqueous sodium chloride media in the pH range 1 to 13 at 25 °C by using adsorptive stripping voltammetry (AdSV). Kinetic dissolution curves have been obtained as well as long-term solubilities that provide an approximation of the equilibrium solubilities. The titania nanoparticles used in the dissolution experiments have been characterized by nitrogen sorption measurements, XRD and colloid titration. The equilibrium solubilities and titanium(IV) speciation and their dependences on pH have been modelled by assuming the formation of the mononuclear titanium hydroxo complexes [Ti(OH) n ](4−n)+ (n=2 to 5) to be the only titanium species present. The solubility product of titanium dioxide and equilibrium constants for titanium(IV) hydrolysis, calculated from the AdSV solubility data, are presented.


Titania Nanoparticles Dissolution Titanium(IV) hydrolysis Adsorptive stripping voltammetry of Ti(IV) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10953_2009_9445_MOESM1_ESM.doc (5 mb)
Below is the link to the electronic supplementary material. (DOC 4.96 MB)


  1. 1.
    Grätzel, M.: Photoelectrochemical cells. Nature 414, 338–344 (2001). doi: 10.1038/35104607 CrossRefGoogle Scholar
  2. 2.
    Zhang, Z., Wang, C., Zakaria, R., Ying, J.Y.: Role of particle size in nanocrystalline TiO2-based photocatalysts. J. Phys. Chem. B 102, 10871–10878 (1998). doi: 10.1021/jp982948+ CrossRefGoogle Scholar
  3. 3.
    Holleman, A.F., Wiberg, N.: Lehrbuch der Anorganischen Chemie/Holleman-Wiberg. de Gruyter, Berlin/New York (1995) Google Scholar
  4. 4.
    Borm, P., Klaessig, F.C., Landry, T.D., Moudgil, B., Pauluhn, J., Thomas, K., Trottier, R., Wood, S.: Research strategies for safety evaluation of nanomaterials, Part V: Role of dissolution in biological fate and effects of nanoscale particles. Toxicol. Sci. 90, 23–32 (2006). doi: 10.1093/toxsci/kfj084 CrossRefGoogle Scholar
  5. 5.
    Oberdörster, G., Oberdörster, E., Oberdörster, J.: Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Heal. Perspect. 113, 823–839 (2005) CrossRefGoogle Scholar
  6. 6.
    Nel, A., Xia, T., Mädler, L., Li, N.: Toxic potential of materials at the nanolevel. Science 311, 622–627 (2006). doi: 10.1126/science.1114397 CrossRefGoogle Scholar
  7. 7.
    Finnegan, M.P., Zhang, H., Banfield, J.F.: Anatase coarsening kinetics under hydrothermal conditions as a function of pH and temperature. Chem. Mater. 20, 3443–3449 (2008). doi: 10.1021/cm071057o CrossRefGoogle Scholar
  8. 8.
    Jolivet, J., Cassaignon, S., Chanéac, C., Chiche, D., Tronc, E.: Design of oxide nanoparticles by aqueous chemistry. J. Sol-Gel Sci. Technol. 46, 299–305 (2008). doi: 10.1007/s10971-007-1645-4 CrossRefGoogle Scholar
  9. 9.
    Testino, A., Bellobono, I.R., Buscaglia, V., Canevali, C., D’Arienzo, M., Polizzi, S., Scotti, R., Morazzoni, F.: Optimizing the photocatalytic properties of hydrothermal TiO2 by the control of phase composition and particle morphology. A systematic approach. J. Am. Chem. Soc. 129, 3564–3575 (2007). doi: 10.1021/ja067050+ CrossRefGoogle Scholar
  10. 10.
    Reyes-Coronado, D., Rodríguez-Gattorno, G., Espinosa-Pesqueira, M.E., Cab, C., de Coss, R., Oskam, G.: Phase-pure TiO2 nanoparticles: anatase. Brookite and rutile. Nanotechnology 19, 145605 (2008) (10 pp.) CrossRefGoogle Scholar
  11. 11.
    Sugimoto, T., Zhou, X., Muramatsu, A.: Synthesis of uniform anatase TiO2 nanoparticles by gel-sol method 1. Solution chemistry of Ti(OH)n(4−n)+ complexes. J. Colloid Interface Sci. 252, 339–346 (2002). doi: 10.1006/jcis.2002.8454 CrossRefGoogle Scholar
  12. 12.
    Pottier, A., Cassaignon, S., Chanéac, C., Villain, F., Tronc, E., Jolivet, J.: Size tailoring of TiO2 anatase nanoparticles in aqueous medium and synthesis of nanocomposites. Characterization by Raman spectroscopy. J. Mater. Chem. 13, 877–882 (2003). doi: 10.1039/b211271j CrossRefGoogle Scholar
  13. 13.
    Atashfaraz, M., Niassar, M.S., Ohara, S., Minami, K., Umetsu, M., Naka, T., Adschiri, T.: Effect of titanium dioxide solubility on the formation of BaTiO3 nanoparticles in supercritical water. Fluid Phase Equilib. 257, 233–237 (2007). doi: 10.1016/j.fluid.2007.03.025 CrossRefGoogle Scholar
  14. 14.
    Schmidt, J., Vogelsberger, W.: Dissolution kinetics of titanium dioxide nanoparticles: the observation of an unusual kinetic size effect. J. Phys. Chem. B 110, 3955–3963 (2006). doi: 10.1021/jp055361l CrossRefGoogle Scholar
  15. 15.
    Vogelsberger, W., Schmidt, J., Roelofs, F.: Dissolution kinetics of oxidic nanoparticles: the observation of an unusual behaviour. Colloids Surf. A Physicochem. Eng. Asp. 324, 51–57 (2008). doi: 10.1016/j.colsurfa.2008.03.032 CrossRefGoogle Scholar
  16. 16.
    Roelofs, F., Vogelsberger, W.: Dissolution kinetics of nanodispersed γ-alumina in aqueous solution at different pH: unusual kinetic size effect and formation of a new phase. J. Colloid Interface Sci. 303, 450–459 (2006). doi: 10.1016/j.jcis.2006.08.016 CrossRefGoogle Scholar
  17. 17.
    Ziemniak, S.E., Jones, M.E., Combs, K.E.S.: Solubility behavior of titanium(IV) oxide in alkaline media at elevated temperatures. J. Solution Chem. 22, 601–623 (1993). doi: 10.1007/BF00646781 CrossRefGoogle Scholar
  18. 18.
    Knauss, K.G., Dibley, M.J., Bourcier, W.L., Shaw, H.F.: Ti(IV) hydrolysis constants derived from rutile solubility measurements made from 100 to 300 °C. Appl. Geochem. 16, 1115–1128 (2001). doi: 10.1016/S0883-2927(00)00081-0 CrossRefGoogle Scholar
  19. 19.
    Antignano, A., Manning, C.E.: Rutile solubility in H2O, H2O–SiO2, and H2O–NaAlSi3O8 fluids at 0.7–2.0 GPa and 700–1000 °C: implications for mobility of nominally insoluble elements. Chem. Geol. 255, 283–293 (2008). doi: 10.1016/j.chemgeo.2008.07.001 CrossRefGoogle Scholar
  20. 20.
    Audétat, A., Keppler, H.: Solubility of rutile in subduction zone fluids, as determined by experiments in the hydrothermal diamond anvil cell. Earth Planet. Sci. Lett. 232, 393–402 (2005). doi: 10.1016/j.epsl.2005.01.028 CrossRefGoogle Scholar
  21. 21.
    Schuiling, R.D., Vink, B.W.: Stability relations of some titanium-minerals (sphene, perovskite, rutile, anatase). Geochim. Cosmochim. Acta 31, 2399–2411 (1967). doi: 10.1016/0016-7037(67)90011-7 CrossRefGoogle Scholar
  22. 22.
    Leturcq, G., Advocat, T., Hart, K., Berger, G., Lacombe, J., Bonnetier, A.: Solubility study of Ti,Zr-based ceramics designed to immobilize long-lived radionuclides. Am. Mineral. 86, 871–880 (2001) Google Scholar
  23. 23.
    Liberti, A., Chiantella, V., Corigliano, F.: Mononuclear hydrolysis of titanium(IV) from partition equilibria. J. Inorg. Nucl. Chem. 25, 415–427 (1963). doi: 10.1016/0022-1902(63)80192-X CrossRefGoogle Scholar
  24. 24.
    Nabivanets, B.I., Lukachina, V.V.: Hydroxy complexes of titanium(IV). Ukr. Khim. Zhur. 30, 1123–1128 (1964) Google Scholar
  25. 25.
    Kelsall, G.H., Robbins, D.J.: Thermodynamics of Ti–H2O–F(–Fe) Systems at 298 K. J. Electroanal. Chem. 283, 135–157 (1990). doi: 10.1016/0022-0728(90)87385-W CrossRefGoogle Scholar
  26. 26.
    Comba, P., Merbach, A.: The titanyl question revisited. Inorg. Chem. 26, 1315–1323 (1987). doi: 10.1021/ic00255a024 CrossRefGoogle Scholar
  27. 27.
    Einaga, H.: Hydrolysis of titanium(IV) in aqueous (Na, H)Cl solution. Dalton Trans. 12, 1917–1919 (1979) Google Scholar
  28. 28.
    Yokoi, K., van den Berg, C.M.G.: Determination of titanium in sea water using catalytic cathodic stripping voltammetry. Anal. Chim. Acta 245, 167–176 (1991). doi: 10.1016/S0003-2670(00)80217-2 CrossRefGoogle Scholar
  29. 29.
    Schmidt, J.: Charakterisierung des Löseverhaltens oxidischer Nanopartikel (TiO2, ZrO2, SiO2) in wässrigen Systemen. Thesis, Friedrich-Schiller-Universität Jena, Jena, Germany (2008) Google Scholar
  30. 30.
    Kraus, W., Nolze, G.: PowderCell for Windows Version 2.4. Bundesanstalt für Materialforschung und –prüfung, Berlin (2000) Google Scholar
  31. 31.
    Barringer, E.A., Bowen, H.K.: High-purity, monodisperse TiO2 powders by hydrolysis of titanium tetraethoxide. 1. Synthesis and physical properties. Langmuir 1, 414–420 (1985). doi: 10.1021/la00064a005 CrossRefGoogle Scholar
  32. 32.
    Löbbus, M., Vogelsberger, W., Sonnefeld, J., Seidel, A.: Current considerations for the dissolution kinetics of solid oxides with silica. Langmuir 14, 4386–4396 (1998). doi: 10.1021/la9712451 CrossRefGoogle Scholar
  33. 33.
    Kosmulski, M.: The significance of the difference in the point of zero charge between rutile and anatase. Adv. Colloid Interface Sci. 99, 255–264 (2002). doi: 10.1016/S0001-8686(02)00080-5 CrossRefGoogle Scholar
  34. 34.
    Hiemstra, T., Venema, P., Van Riemsdijk, W.H.: Intrinsic proton affinity of reactive surface groups of metal (hydr)oxides: the bond valence principle. J. Colloid Interface Sci. 184, 680–692 (1996). doi: 10.1006/jcis.1996.0666 CrossRefGoogle Scholar
  35. 35.
    Vogelsberger, W.: Thermodynamic and kinetic considerations of the formation and the dissolution of nanoparticles of substances having low solubility. J. Phys. Chem. B 107, 9669–9676 (2003). doi: 10.1021/jp030347z CrossRefGoogle Scholar
  36. 36.
    Lencka, M.M., Riman, R.E.: Thermodynamic modeling of hydrothermal synthesis of ceramic powders. Chem. Mater. 5, 61–70 (1993). doi: 10.1021/cm00025a014 CrossRefGoogle Scholar
  37. 37.
    Wolfram, S.: Das Mathematica-Buch. Addison-Wesley/Longman, Bonn (1997) Google Scholar
  38. 38.
    Grenthe, I., Wanner, H., Östhols, E.: TDB-2, Guidelines for the Extrapolation to Zero Ionic Strength. OECD Nuclear Energy Agency (2000) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institute of Physical Chemistry, Chemistry and Earth Science FacultyFriedrich-Schiller-University JenaJenaGermany
  2. 2.Institute of Particle TechnologyUniversity of Erlangen-NurembergErlangenGermany

Personalised recommendations