Journal of Solution Chemistry

, Volume 38, Issue 9, pp 1097–1117 | Cite as

Calculations of Freezing Point Depression, Boiling Point Elevation, Vapor Pressure and Enthalpies of Vaporization of Electrolyte Solutions by a Modified Three-Characteristic Parameter Correlation Model

Article

Abstract

A method was proposed for calculating the thermodynamic properties, freezing point depression, boiling point elevation, vapor pressure and enthalpy of vaporization for single solute electrolyte solutions, including aqueous and nonaqueous solutions, based on a modified three-characteristic-parameter correlation model. When compared with the corresponding literature values, the calculated results show that this method gives a very good approximation, especially for 1-1 electrolytes. Although the method is not very suitable for some solutions with very high ionic strength, it is still a very useful technique when experimental data is scarce.

Keywords

Electrolyte solutions Freezing point Boiling point Enthalpy of vaporization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, L.H.: The measurement of the freezing-point depression of dilute solutions. J. Am. Chem. Soc. 37, 481–496 (1914). doi: 10.1021/ja02168a005 CrossRefGoogle Scholar
  2. 2.
    Ambrose, D., Sprake, C.H.S.: Thermodynamic properties of organic oxygen compounds. XXV. Vapor pressures and normal boiling temperatures of aliphatic alcohols. J. Chem. Thermodyn. 2, 631–645 (1970). doi: 10.1016/0021-9614(70)90038-8 CrossRefGoogle Scholar
  3. 3.
    Apelblat, A.: Cryoscopy of uranyl nitrate solutions and activity coefficients. J. Inorg. Nucl. Chem. 39, 1852–1854 (1977). doi: 10.1016/0022-1902(77)80220-0 CrossRefGoogle Scholar
  4. 4.
    Apelblat, A.: The vapour pressures of water over saturated aqueous solutions of barium chloride, magnesium nitrate, calcium nitrate, potassium carbonate, and zinc sulfate, at temperatures from 283 K to 313 K. J. Chem. Thermodyn. 24, 619–626 (1992). doi: 10.1016/S0021-9614(05)80033-3 CrossRefGoogle Scholar
  5. 5.
    Apelblat, A.: The vapour pressures of saturated aqueous solutions of potassium bromide, ammonium sulfate, copper(II) sulfate, iron(II) sulfate, and manganese(II) dichloride, at temperatures from 283 K to 308 K. J. Chem. Thermodyn. 25, 1513–1520 (1993). doi: 10.1006/jcht.1993.1151 CrossRefGoogle Scholar
  6. 6.
    Apelblat, A.: The vapour pressures of saturated aqueous lithium chloride, sodium bromide, sodium nitrate, ammonium nitrate, and ammonium chloride at temperatures from 283 K to 313 K. J. Chem. Thermodyn. 25, 63–71 (1993). doi: 10.1006/jcht.1993.1008 CrossRefGoogle Scholar
  7. 7.
    Apelblat, A.: Vapour pressures of H2 16O and H2 18O, and saturated aqueous solutions of KCl from T=298 K to T=318 K by the isoteniscopic method. J. Chem. Thermodyn. 30, 1191–1198 (1998). doi: 10.1006/jcht.1998.0381 CrossRefGoogle Scholar
  8. 8.
    Apelblat, A., Korin, E.: The vapour pressures of saturated aqueous solutions of sodium chloride, sodium bromide, sodium nitrate, sodium nitrite, potassium iodate, and rubidium chloride at temperatures from 277 K to 323 K. J. Chem. Thermodyn. 30, 59–71 (1998). doi: 10.1006/jcht.1997.0275 CrossRefGoogle Scholar
  9. 9.
    Apelblat, A., Korin, E.: Vapour pressures of saturated aqueous solutions of ammonium iodide, potassium iodide, potassium nitrate, strontium chloride, lithium sulphate, sodium thiosulphate, magnesium nitrate, and uranyl nitrate from T=(278 to 323) K. J. Chem. Thermodyn. 30, 459–471 (1998). doi: 10.1006/jcht.1997.0311 CrossRefGoogle Scholar
  10. 10.
    Apelblat, A., Korin, E.: The molar enthalpies of solution and vapour pressures of saturated aqueous solutions of aluminium chloride, aluminium nitrate and aluminium sulphate. J. Chem. Thermodyn. 34, 1919–1927 (2002). doi: 10.1016/S0021-9614(02)00188-X Google Scholar
  11. 11.
    Apelblat, A., Korin, E.: The molar enthalpies of solution and vapour pressures of saturated aqueous solutions of some ammonium salts. J. Chem. Thermodyn. 35, 699–709 (2003). doi: 10.1016/S0021-9614(02)00353-1 CrossRefGoogle Scholar
  12. 12.
    Apelblat, A., Korin, E.: The molar enthalpies of solution and vapour pressures of saturated aqueous solutions of some cesium salts. J. Chem. Thermodyn. 38, 152–157 (2006). doi: 10.1016/j.jct.2005.04.016 CrossRefGoogle Scholar
  13. 13.
    Apelblat, A., Korin, E.: The vapour pressures over saturated aqueous solutions of cadmium chloride, cadmium bromide, cadmium iodide, cadmium nitrate, and cadmium sulphate. J. Chem. Thermodyn. 39, 1065–1070 (2007). doi: 10.1016/j.jct.2006.12.010 CrossRefGoogle Scholar
  14. 14.
    Apelblat, A., Manzurola, E.: The vapour pressures over saturated aqueous solutions of sodium and potassium acetates, chlorates, and perchlorates. J. Chem. Thermodyn. 39, 1176–1181 (2007). doi: 10.1016/j.jct.2006.12.006 CrossRefGoogle Scholar
  15. 15.
    Apelblat, A., Mariana, D., Jaime, W., Jacob, Z.: The vapour pressure of water over saturated aqueous solutions of malic, tartaric, and citric acids, at temperatures from 288 K to 323 K. J. Chem. Thermodyn. 27, 35–41 (1995). doi: 10.1006/jcht.1995.0004 CrossRefGoogle Scholar
  16. 16.
    Apelblat, A., Korin, E., Emanuel, M.: Solubilities and vapour pressures of saturated aqueous solutions of sodium peroxydisulfate and potassium peroxydisulfate. J. Chem. Thermodyn. 33, 61–69 (2001). doi: 10.1006/jcht.2000.0780 CrossRefGoogle Scholar
  17. 17.
    Bancroft, W.D., Davis, H.L.: The boiling-points of aqueous solutions. J. Phys. Chem. 33, 591–604 (1929). doi: 10.1021/j150298a008 CrossRefGoogle Scholar
  18. 18.
    Barthel, J., Lauermann, G.: Vapor pressure of non-aqueous electrolyte solutions. Part 3. Solutions of sodium iodide in ethanol, 2-propanol, and acetonitrile. J. Solution Chem. 15, 869–877 (1986). doi: 10.1007/BF00646093 CrossRefGoogle Scholar
  19. 19.
    Barthel, J., Neueder, R., Lauermann, G.: Vapor pressure of non-aqueous electrolyte solutions. Part 1. Alkali metal salts in methanol. J. Solution Chem. 14, 621–633 (1985). doi: 10.1007/BF00646055 CrossRefGoogle Scholar
  20. 20.
    Barthel, J., Lauermann, G., Neueder, R.: Vapor pressure measurements on non-aqueous electrolyte solutions. Part 2. Tetraalkylammonium salts in methanol, activity coefficients of various 1-1 electrolytes at high concentrations. J. Solution Chem. 15, 851–867 (1986). doi: 10.1007/BF00646092 CrossRefGoogle Scholar
  21. 21.
    Barthel, J., Neueder, R., Poepke, H., Wittmann, H.: Osmotic and activity coefficients of nonaqueous electrolyte solutions. 1. Lithium perchlorate in the protic solvents methanol, ethanol, and 2-propanol. J. Solution Chem. 27, 1055–1066 (1998). doi: 10.1023/A:1022637316064 CrossRefGoogle Scholar
  22. 22.
    Beyer, R., Steiger, M.: Vapour pressure measurements and thermodynamic properties of aqueous solutions of sodium acetate. J. Chem. Thermodyn. 34, 1057–1071 (2002). doi: 10.1006/jcht.2002.0974 CrossRefGoogle Scholar
  23. 23.
    Bixon, E., Guerry, R., Tassios, D.: Salt effect on the vapor pressure of pure solvents: methanol with seven salts; at 24.9 °C. J. Chem. Eng. Data 24, 9–11 (1979). doi: 10.1021/je60080a005 CrossRefGoogle Scholar
  24. 24.
    Bradley, J.B., Pitzer, K.S.: Thermodynamics of electrolytes. 12. Dielectric properties of water and Debye-Hückel parameters to 350 °C and 1 kbar. J. Phys. Chem. 83, 1599–1603 (1979). doi: 10.1021/j100475a009 CrossRefGoogle Scholar
  25. 25.
    Bridgeman, O.C., Aldrich, E.W.: Vapor pressure tables for water. J. Heat Transf. 86, 279–286 (1964) Google Scholar
  26. 26.
    Bromley, L.A.: Thermodynamic properties of strong electrolytes in aqueous solutions. AIChE J. 19, 313–320 (1973). doi: 10.1002/aic.690190216 CrossRefGoogle Scholar
  27. 27.
    Campbell, A.N., Bhatnagar, O.N.: Osmotic and activity coefficients of sodium hydroxide in water from 150 to 250 °C. J. Chem. Eng. Data 29, 166–168 (1984). doi: 10.1021/je00036a020 CrossRefGoogle Scholar
  28. 28.
    Chen, C.C., Evans, L.B.: A local composition model for excess Gibbs energy of electrolyte systems. AIChE J. 32, 444–454 (1986). doi: 10.1002/aic.690320311 CrossRefGoogle Scholar
  29. 29.
    Chen, C.C., Britt, H.I., Boston, J.F., Evans, L.B.: Local composition model for excess Gibbs energy of electrolyte systems. AIChE J. 28, 588–596 (1982). doi: 10.1002/aic.690280410 CrossRefGoogle Scholar
  30. 30.
    De Coppet, L.C.: On the molecular depression of the freezing-point of water produced by some very concentrated saline solutions. J. Phys. Chem. 8, 531–538 (1904). doi: 10.1021/j150062a001 CrossRefGoogle Scholar
  31. 31.
    Ge, X.L., Wang, X.D.: A simple two-parameter correlation model for aqueous electrolyte solutions across a wide range of temperature. J. Chem. Eng. Data 54, 179–186 (2009) CrossRefGoogle Scholar
  32. 32.
    Ge, X.L., Wang, X.D., Zhang, M., Seetharaman, S.: Correlation and prediction of activity and osmotic coefficients of aqueous electrolytes at 298.15 K by the modified TCPC model. J. Chem. Eng. Data 52, 538–547 (2007). doi: 10.1021/je060451k CrossRefGoogle Scholar
  33. 33.
    Ge, X.L., Wang, X.D., Zhang, M., Seetharaman, S.: A new three-particle-interaction model to predict the thermodynamic properties of different electrolytes. J. Chem. Thermodyn. 39, 602–612 (2007). doi: 10.1016/j.jct.2006.09.002 CrossRefGoogle Scholar
  34. 34.
    Ge, X.L., Zhang, M., Guo, M., Wang, X.D.: Correlation and prediction of thermodynamic properties of some complex aqueous electrolytes by the modified three-characteristic-parameter correlation model. J. Chem. Eng. Data 53, 950–958 (2008). doi: 10.1021/je7006499 CrossRefGoogle Scholar
  35. 35.
    Ge, X.L., Zhang, M., Guo, M., Wang, X.D.: Correlation and prediction of thermodynamic properties of non-aqueous electrolytes by the modified TCPC model. J. Chem. Eng. Data 53, 149–159 (2008). doi: 10.1021/je700446q CrossRefGoogle Scholar
  36. 36.
    Haghighi, H., Chapoy, A., Tohidi, B.: Freezing point depression of electrolyte solutions: experimental measurements and modeling using the cubic-plus-association equation of state. Ind. Eng. Chem. Res. 47, 3983–3989 (2008). doi: 10.1021/ie800017e CrossRefGoogle Scholar
  37. 37.
    Hall, R.E., Harkins, W.D.: The free energy of dilution and the freezing-point lowering in solutions of some salts of various types of ionization, and of salt mixtures. J. Am. Chem. Soc. 38, 2658–2676 (1916). doi: 10.1021/ja02269a009 CrossRefGoogle Scholar
  38. 38.
    Huang, S.H., Radosz, M.: Equation of state for small, large, poly disperse, and associating molecules. Ind. Eng. Chem. Res. 29, 2284–2294 (1990). doi: 10.1021/ie00107a014 CrossRefGoogle Scholar
  39. 39.
    Hunter, J.B., Harding, B.: Thermodynamic properties of aqueous salt solutions. Latent heats of vaporization and other properties by the gas current method. Ind. Eng. Chem. 36, 945–953 (1944). doi: 10.1021/ie50418a019 CrossRefGoogle Scholar
  40. 40.
    Johnson, G.C., Smith, R.P.: The boiling point elevation. IV. Potassium bromide in water. J. Am. Chem. Soc. 63, 1351–1353 (1941). doi: 10.1021/ja01850a060 CrossRefGoogle Scholar
  41. 41.
    Li, W.C.: Physical Chemistry of Metallurgy and Materials. Metallurgy Press, Beijing (2001) Google Scholar
  42. 42.
    Lide, D.R. (ed.): CRC Handbook of Chemistry and Physics, 87th edn. CRC Press, Boca Raton (2006–2007) Google Scholar
  43. 43.
    Lide, D.R. (ed.): CRC Handbook of Chemistry and Physics, 88th edn. CRC Press, Boca Raton (2007–2008) Google Scholar
  44. 44.
    Lin, C.L., Tseng, H.C., Lee, L.S.: A three-characteristic-parameter correlation model for strong electrolyte solutions. Fluid Phase Equil. 152, 169–185 (1998). doi: 10.1016/S0378-3812(98)00393-8 CrossRefGoogle Scholar
  45. 45.
    Liu, C.T., Lindsay, W.T. Jr.: Vapor pressure of D2O from 106 to 300 °C. J. Chem. Eng. Data 15, 510–513 (1970). doi: 10.1021/je60047a015 CrossRefGoogle Scholar
  46. 46.
    Lu, J.F., Yu, Y.X., Li, Y.G.: Modification and application of the mean spherical approximation method. Fluid Phase Equil. 85, 81–100 (1996). doi: 10.1016/0378-3812(93)80006-9 CrossRefGoogle Scholar
  47. 47.
    Modell, M., Reid, R.C.: Thermodynamics and Its Applications. Prentice Hall, Englewood Cliffs (1974) Google Scholar
  48. 48.
    Mohammed, T.Z.M., Jaber, J.S.: Isopiestic determination of osmotic coefficients and evaluation of vapor pressures for electrolyte solutions of some lithium salts in ethanol. Fluid Phase Equil. 166, 207–223 (1999). doi: 10.1016/S0378-3812(99)00293-9 CrossRefGoogle Scholar
  49. 49.
    Møller, N.: The prediction of mineral solubilities in natural waters: a chemical equilibrium model for the Na-Ca-Cl-SO4−H2O system, to high temperature and concentration. Geochim. Cosmochim. Acta 52, 821–837 (1988). doi: 10.1016/0016-7037(88)90354-7 CrossRefGoogle Scholar
  50. 50.
    Nasehzadeh, A., Noroozian, E., Omrani, H.: Experimental and theoretical studies of thermodynamics of lithium halide solutions–ethanol mixtures. J. Chem. Thermodyn. 36, 245–252 (2004). doi: 10.1016/j.jct.2003.12.002 CrossRefGoogle Scholar
  51. 51.
    Nasirzadeh, K., Neueder, R., Kunz, W.: Vapor pressures, osmotic and activity coefficients for (LiBr + acetonitrile) between the temperatures (298.15 and 343.15) K. J. Chem. Thermodyn. 36, 511–517 (2004). doi: 10.1016/j.jct.2004.03.007 CrossRefGoogle Scholar
  52. 52.
    Nasirzadeh, K., Neueder, R.: Measurement and correlation of osmotic coefficients and evaluation of vapor pressure for electrolyte solutions of LiClO4 and LiNO3 in methanol at 25 °C. J. Mol. Liq. 113, 13–20 (2004). doi: 10.1016/j.molliq.2004.02.028 CrossRefGoogle Scholar
  53. 53.
    Nasirzadeh, K., Salabat, A.: Isopiestic determination of osmotic coefficients and evaluation of vapor pressures for solutions of sodium bromide and sodium thiocyanate in methanol at 25 °C. J. Mol. Liq. 106, 1–14 (2003). doi: 10.1016/S0167-7322(03)00016-3 CrossRefGoogle Scholar
  54. 54.
    Nasirzadeh, K., Neueder, R., Kunz, W.: Vapor pressures and osmotic coefficients of aqueous LiOH solutions at temperatures ranging from 298.15 to 363.15 K. Ind. Eng. Chem. Res. 44, 3807–3814 (2005). doi: 10.1021/ie0489148 CrossRefGoogle Scholar
  55. 55.
    Patil, K.R., Tripathi, A.D., Pathak, G., Katti, S.S.: Thermodynamic properties of aqueous electrolyte solutions. 1. Vapor pressure of aqueous solutions of LiCl, LiBr, and LiI. J. Chem. Eng. Data 35, 166–168 (1990). doi: 10.1021/je00060a020 CrossRefGoogle Scholar
  56. 56.
    Patil, K.R., Tripathi, A.D., Pathak, G., Katti, S.S.: Thermodynamic properties of aqueous electrolyte solutions. 2. Vapor pressure of aqueous solutions of NaBr, NaI, KCl, KBr, KI, RbCl, CsCl, CsBr, CsI, MgCl2, CaCl2, CaBr2, CaI2, SrCl2, SrBr2, SrI2, BaCl2, and BaBr2. J. Chem. Eng. Data 36, 225–230 (1991). doi: 10.1021/je00002a021 CrossRefGoogle Scholar
  57. 57.
    Pepela, C.N., Dunlop, P.J.: A re-examination of the vapor pressure of aqueous sodium chloride solutions at 25 °C. J. Chem. Thermodyn. 4, 255–258 (1972). doi: 10.1016/0021-9614(72)90064-X CrossRefGoogle Scholar
  58. 58.
    Pitzer, K.S., Mayogra, G.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77, 268–277 (1973). doi: 10.1021/j100621a026 CrossRefGoogle Scholar
  59. 59.
    Randall, M., Scott, G.N.: The freezing point and activity coefficient of aqueous barium nitrate, sodium sulfate and sulfuric acid. J. Am. Chem. Soc. 49, 647–656 (1927). doi: 10.1021/ja01402a007 CrossRefGoogle Scholar
  60. 60.
    Safarov, J.T.: Study of thermodynamic properties of binary solutions of lithium bromide or lithium chloride with methanol. Fluid Phase Equil. 236, 87–95 (2005). doi: 10.1016/j.fluid.2005.07.002 CrossRefGoogle Scholar
  61. 61.
    Safarov, J.T.: Vapor pressures of lithium bromide or lithium chloride and ethanol solutions. Fluid Phase Equil. 243, 38–44 (2006). doi: 10.1016/j.fluid.2006.02.012 CrossRefGoogle Scholar
  62. 62.
    Safarov, J.T.: Investigation of the vapor pressure p of zinc bromide or zinc chloride solutions with methanol by static method. J. Chem. Thermodyn. 38, 304–311 (2006). doi: 10.1016/j.jct.2005.05.017 CrossRefGoogle Scholar
  63. 63.
    Safarov, J.T.: Vapor pressure measurements of binary solutions of CaCl2 with methanol and ethanol at (298.15 to 323.15) K using a static method. J. Chem. Eng. Data 51, 360–365 (2006). doi: 10.1021/je0502086 CrossRefGoogle Scholar
  64. 64.
    Salimi, H.R., Taghikhani, V., Ghotbi, C.: Application of the GV-MSA model to the electrolyte solutions containing mixed salts and mixed solvents. Fluid Phase Equil. 231, 67–76 (2005). doi: 10.1016/j.fluid.2004.12.015 CrossRefGoogle Scholar
  65. 65.
    Sardroodi, J.J., Seyedahmadian, S.M., Sadr, M.H., Kazemi, Y.: Isopiestic study of the solutions of MnCl2, CoCl2 and NiCl2 in methanol and ethanol at 298.15 K. Fluid Phase Equil. 240, 114–121 (2006). doi: 10.1016/j.fluid.2005.12.014 CrossRefGoogle Scholar
  66. 66.
    Saxton, B., Smith, R.P.: The activity coefficient of potassium chloride in aqueous solution from boiling point data. J. Am. Chem. Soc. 54, 2626–2636 (1932). doi: 10.1021/ja01346a005 CrossRefGoogle Scholar
  67. 67.
    Smith, R.P.: The boiling point elevation. II. Sodium chloride 0.05 to 1.0 M and 60 °C to 100 °C. J. Am. Chem. Soc. 61, 500–503 (1939). doi: 10.1021/ja01871a079 CrossRefGoogle Scholar
  68. 68.
    Spencer, R.J., Møller, N., Weare, J.H.: The prediction of mineral solubilities in natural waters: a chemical equilibrium model for the Na-K-Ca-Mg-Cl-SO4−H2O system at temperatures below 25 °C. Geochim. Cosmochim. Acta 54, 575–590 (1990). doi: 10.1016/0016-7037(90)90354-N CrossRefGoogle Scholar
  69. 69.
    Tomasula, P., Czerwienski, G.J., Tassios, D.: Vapor pressure and osmotic coefficients: electrolyte solutions of methanol. Fluid Phase Equil. 38, 129–153 (1987). doi: 10.1016/0378-3812(87)90008-2 CrossRefGoogle Scholar
  70. 70.
    Verevkin, S., Safarov, J.T., Bich, E., Hassel, E., Heintz, A.: Study of vapour pressure of lithium nitrate solutions in ethanol. J. Chem. Thermodyn. 38, 611–616 (2006). doi: 10.1016/j.jct.2005.07.015 CrossRefGoogle Scholar
  71. 71.
    Washburn, E.W.: International Critical Tables of Numerical Data, Physics, Chemistry and Technology, 1st electronic edn., pp. 1926–1930. Knovel, New York (2003) Google Scholar
  72. 72.
    Worth, H.R.: The Freezing points of concentrated solutions and the free energy of solution of salts. J. Am. Chem. Soc. 40, 1204–1213 (1918). doi: 10.1021/ja02241a008 CrossRefGoogle Scholar
  73. 73.
    Zafarani-Moattar, M.T., Jahanbin-Sardroodi, J.: Measurement and correlation of osmotic coefficients and evaluation of vapor pressures for solutions of CaCl2 and Ca(NO3)2 in ethanol at 298 K. Fluid Phase Equil. 172, 221–235 (2000). doi: 10.1016/S0378-3812(00)00372-1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringRoyal Institute of TechnologyStockholmSweden
  2. 2.College of EngineeringPeking UniversityBeijingChina

Personalised recommendations