Journal of Solution Chemistry

, 37:1575 | Cite as

An Alternate Solution of the Fluorescence Recovery Kinetics after Spot-Bleaching for Measuring Diffusion Coefficients. 1. Theory and Numerical Analysis

  • G. A. Frank
  • M. C. Marconi
  • H. R. CortiEmail author


The classical three-point method for obtaining a diffusion coefficient of probes from the fluorescence recovery function in the Fluorescence Recovery After Photobleaching (FRAP) technique, when Gaussian or uniform spot-photobleaching profiles are used, leads to an expression that is not suitable for linear fittings. Therefore, determination of the diffusion coefficient is complex and very dependent on the recovery time. In this work we propose a new solution for the fluorescence recovery function after spot-bleaching using a Gaussian beam, which is a better alternative method than the three-point method for the data analysis of the FRAP kinetics. The new method can be applied for shorter recovery times thereby minimizing errors due to convective effects. It leads to a linear relationship between the recovery function and the diffusion coefficient and, as shown in the analysis of a model case, allows a more accurate determination of the diffusion coefficient of fluorescent probes.


Photobleaching Fluorescence recovery FRAP Diffusion 


  1. 1.
    Peters, R., Peters, J., Tews, K.H., Bähr, W.: A microfluorimetric study of translational diffusion in erythrocyte membranes. Biochim. Biophys. Acta Biomembr. 367, 282–294 (1974) CrossRefGoogle Scholar
  2. 2.
    Jacobson, K., Wu, E., Poste, G.: Measurement of the translational mobility of concanavalin A in glycerol-saline solution and on the cell surface by fluorescence recovery after photobleaching. Biochim. Biophys. Acta Biomembr. 433, 215–222 (1976) CrossRefGoogle Scholar
  3. 3.
    Schlessinger, J., Koppel, D.E., Axelrod, D., Jacobson, K., Webb, W.W., Elson, E.L.: Lateral transport on cell membranes: mobility of concanavalin A receptors on myoblasts. Proc. Natl. Acad. Sci. USA 73, 2409–2413 (1976). doi: 10.1073/pnas.73.7.2409 CrossRefGoogle Scholar
  4. 4.
    Edidin, M., Zagyansky, Y., Lardner, T.J.: Measurement of membrane protein lateral diffusion in single cells. Science 191, 466–468 (1976). doi: 10.1126/science.1246629 CrossRefGoogle Scholar
  5. 5.
    Axelrod, D., Koppel, D.E., Schlessinger, J., Elson, E., Webb, W.W.: Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16, 1055–1069 (1976) Google Scholar
  6. 6.
    Koppel, D.E., Axelrod, D., Schlessinger, J., Elson, E., Webb, W.W.: Dynamics of fluorescence marker concentration as a probe of mobility. Biophys. J. 16, 1315–1329 (1976) Google Scholar
  7. 7.
    Kovaleski, J.M., Wirth, M.J.: Applications of fluorescence recovery after photobleaching. Anal. Chem. News Features (October 1), 601A–605A (1997) Google Scholar
  8. 8.
    Mustafa, M.B., Tipton, D.L., Barkely, M.D., Russo, P.S.: Dye diffusion in isotropic and liquid crystalline aqueous (hydroxypropyl)cellulose. Macromolecules 26, 370–378 (1993). doi: 10.1021/ma00054a017 CrossRefGoogle Scholar
  9. 9.
    Champion, D., Hevert, H., Blond, G., Simatos, D.: Comparison between two methods to measure translational diffusion of a small molecule at subzero temperature. J. Agric. Food Chem. 43, 2887–2891 (1995). doi: 10.1021/jf00059a022 CrossRefGoogle Scholar
  10. 10.
    Blackburn, F.R., Wang, C., Ediger, M.D.: Translational and rotational motion of probes in supercooled 1,3,5-tris(naphthyl)benzene. J. Phys. Chem. 100, 18249–18257 (1996). doi: 10.1021/jp9622041 CrossRefGoogle Scholar
  11. 11.
    Champion, D., Hevert, H., Blond, G., Le Meste, M., Simatos, D.: Translational diffusion in sucrose solutions in the vicinity of their glass transition temperature. J. Phys. Chem. B 101, 10674–10679 (1997). doi: 10.1021/jp971899i CrossRefGoogle Scholar
  12. 12.
    Rampp, M., Buttersack, C., Lüdemann, H.-D.: c,T-dependence of the viscosity and the self-diffusion coefficients in some aqueous carbohydrate solutions. Carbohydr. Res. 328, 561–572 (2000). doi: 10.1016/S0008-6215(00)00141-5 CrossRefGoogle Scholar
  13. 13.
    Longinotti, M.P., Corti, H.R.: Diffusion of ferrocene methanol in supercooled aqueous solutions using cylindrical microelectrodes. Electrochem. Commun. 9, 1444–1450 (2006). doi: 10.1016/j.elecom.2007.02.003 CrossRefGoogle Scholar
  14. 14.
    Magazù, S., Maisano, G., Migliardo, P., Villari, V.: Experimental simulation of macromolecules in trehalose aqueous solutions: a photon correlation spectroscopy study. J. Chem. Phys. 111, 9086–9092 (1999). doi: 10.1063/1.480250 CrossRefGoogle Scholar
  15. 15.
    Eggeling, C., Widengren, J., Rigler, R., Seidel, C.A.M.: Photobleaching of fluorescent dyes under conditions used for single-molecule detection: evidence of two-step photolysis. Anal. Chem. 70, 2651–2659 (1998). doi: 10.1021/ac980027p CrossRefGoogle Scholar
  16. 16.
    Pringsheim, P.: Fluorescence and Phosphorescence. Interscience Publishers Inc., London (1949) Google Scholar
  17. 17.
    Wells, S.: Fundamentals of Fluorescence. In: O’Brien Workshop. Optical Microscopy in Renal Research, Indiana University-School of Medicine (2003) Google Scholar
  18. 18.
    Song, L., Hennink, E.J., Young, I.T., Tanke, H.J.: Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy. Biophys. J. 68, 2588–2600 (1995) Google Scholar
  19. 19.
    Davis, P.J.: Gamma function and related functions. In: Abramowitz, M., Stegun, I.A. (eds.) Handbook of Mathematical Functions, 4th edn. Dover, New York (1965) Google Scholar
  20. 20.
    Box, M.J.: Bias in nonlinear estimation. J. R. Stat. Soc. B 33, 171–201 (1971) Google Scholar
  21. 21.
    Olver, F.W.J.: Bessel functions of integer order. In: Abramowitz, M., Stegun, I.A. (eds.) Handbook of Mathematical Functions, 4th edn. Dover, New York (1965) Google Scholar
  22. 22.
    Luke, Y.L.: Integrals of Bessel functions. In: Abramowitz, M., Stegun, I.A. (eds.) Handbook of Mathematical Functions, 4th edn. Dover, New York (1965) Google Scholar
  23. 23.
    Wrench, J.W.: Concerning two series for the gamma function. Math. Comput. 22, 617–626 (1968). doi: 10.2307/2004538 CrossRefGoogle Scholar
  24. 24.
    Mathews, J.H., Fink, K.D.: Métodos Numéricos con Matlab, 3rd edn., p. 393. Pearson Educación S.A., Madrid (2005) Google Scholar
  25. 25.
    Barreto, H., Maharry, D.: Least median of squares and regression through the origin. Comput. Stat. Data Anal. 50, 1391–1397 (2006). doi: 10.1016/j.csda.2005.01.005 CrossRefGoogle Scholar
  26. 26.
    Saxton, M.J.: Anomalous subdiffusion in fluorescence photobleaching recovery: a Monte Carlo study. Biophys. J. 81, 2226–2240 (2001) CrossRefGoogle Scholar
  27. 27.
    Hubert, M., Rousseeuw, P.J.: Robust regression with both continuous and binary regressors. J. Stat. Plann. Inf. 57, 153–163 (1997). doi: 10.1016/S0378-3758(96)00041-9 CrossRefGoogle Scholar
  28. 28.
    Corti, H.R., Frank, G.A., Marconi, M.C.: An alternative solution of the fluorescence recovery kinetics after spot-bleaching for measuring diffusion coefficients. 2. Diffusion of fluorescein in sucrose aqueous solutions. J. Solution Chem. 37 (2008). doi: 10.1007/s10953-008-9329-4

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Laboratorio de Electrónica Cuántica, Departamento de Física, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.Departamento de Fisica de Materia Condensada, Centro Atómico ConstituyentesComisión Nacional de Energía AtómicaBuenos AiresArgentina
  3. 3.Instituto de Química Física de los Materiales, Ambiente y Energía (INQUIMAE), Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations