Advertisement

Journal of Solution Chemistry

, 37:1593 | Cite as

An Alternate Solution of Fluorescence Recovery Kinetics after Spot-Bleaching for Measuring Diffusion Coefficients. 2. Diffusion of Fluorescein in Aqueous Sucrose Solutions

  • H. R. CortiEmail author
  • G. A. Frank
  • M. C. Marconi
Article

Abstract

The traditional analysis of the fluorescence recovery kinetics after spot bleaching yields expressions for the diffusion coefficient of the probe that are not suitable for linear fittings. In a previous work we developed an improved recovery function that is a better alternative for data analysis. To illustrate its application to real cases and compare it with the previous data treatment, we measured the time response of fluorescein in aqueous sucrose solutions, covering the unsaturated and the supercooled region, where decoupling between diffusion and viscosity is observed. The results are compared with the mobility of different types of solutes in aqueous sucrose solutions and are discussed in terms of the classical hydrodynamic model.

Keywords

Photobleaching Fluorescence recovery Diffusion Fluorescein Supercooled Sucrose solutions Stokes-Einstein equation 

References

  1. 1.
    Frank, G.A., Marconi, M.C., Corti, H.R.: An alternative solution of the fluorescence recovery kinetics after spot-bleaching for measuring diffusion coefficients. 1. Theory and numerical analysis. J. Solution Chem. 37 (2008). doi: 10.1007/s10953-008-9330-y
  2. 2.
    Axelrod, D., Koppel, D.E., Schlessinger, J., Elson, E., Webb, W.W.: Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16, 1055–1069 (1976) CrossRefGoogle Scholar
  3. 3.
    Champion, D., Hevert, H., Blond, G., Le Meste, M., Simatos, D.: Translational diffusion in sucrose solutions in the vicinity of their glass transition temperature. J. Phys. Chem. B 101, 10674–10679 (1997). doi: 10.1021/jp971899i CrossRefGoogle Scholar
  4. 4.
    Bellows, R.J., King, C.J.: Product collapse during freeze drying of liquid foods. AIChE Symp. Ser. 69, 33–41 (1973) Google Scholar
  5. 5.
    Kerr, W.L., Reid, D.S.: Temperature dependence of the viscosity of sugar and maltodextrin solutions in coexistence with ice. Lebenson. Wiss. Technol. 27, 225–231 (1994). doi: 10.1006/fstl.1994.1046 CrossRefGoogle Scholar
  6. 6.
    Génotelle, J.: Expression de la viscosité des solutions sucrées. Ind. Alim. Agric. 95, 747–755 (1978) Google Scholar
  7. 7.
    Longinotti, M.P., Corti, H.R.: Viscosity of concentrated trehalose and sucrose aqueous solutions including the supercooled regime. J. Phys. Ref. Data 37, 1503–1515 (2008). doi: 10.1063/1.2932114 CrossRefGoogle Scholar
  8. 8.
    Gordon, J.M., Taylor, J.S.: Ideal copolymers and second-order transitions in synthetic rubbers. I. Non-crystalline polymers. J. Appl. Chem. 2, 493–500 (1952) Google Scholar
  9. 9.
    Moore, A.W., Jorgenson, J.W.: Study of zone broadening in optically gated high-speed capillary electrophoresis. Anal. Chem. 65, 3550–3560 (1993). doi: 10.1021/ac00072a004 CrossRefGoogle Scholar
  10. 10.
    Mustafa, M.B., Tipton, D.L., Russo, P.S.: Temperature ramped fluorescence photobleaching recovery for the direct evaluation of thermoreversible gels. Macromolecules 22, 1500–1504 (1989). doi: 10.1021/ma00193a089 CrossRefGoogle Scholar
  11. 11.
    Mosier, B.P., Molho, J.J., Santiago, J.G.: Photobleached-fluorescence imaging of microflows. Exp. Fluids 33, 545–554 (2002) Google Scholar
  12. 12.
    Mustafa, M.B., Tipton, D.L., Barkley, M.D., Russo, P.S.: Dye diffusion in isotropic and liquid crystalline aqueous (hydroxypropyl)cellulose. Macromolecules 26, 370–378 (1993). doi: 10.1021/ma00054a017 CrossRefGoogle Scholar
  13. 13.
    Wang, L., Roitberg, A., Meuse, C., Gaigalas, A.K.: Raman and FTIR spectroscopies of fluorescein in solutions. Spectrochim. Acta A Mol. Biomol. Spectrosc. 51, 1781–1791 (2001). doi: 10.1016/S1386-1425(01)00408-5 CrossRefGoogle Scholar
  14. 14.
    Sjöback, R., Nygren, J., Kubista, M.: Absorption and fluorescence properties of fluorescein. Spectrochim. Acta A Mol. Biomol. Spectrosc. 51, L7–L21 (1995). doi: 10.1016/0584-8539(95)01421-P CrossRefGoogle Scholar
  15. 15.
    Hubbard, J.B., Douglas, J.F.: Hydrodynamic friction of arbitrarily shaped Brownian particles. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 47, R2983–R2986 (1993). doi: 10.1103/PhysRevE.47.R2983 Google Scholar
  16. 16.
    Longinotti, M.P., Corti, H.R.: Diffusion of ferrocene methanol in supercooled aqueous solutions using cylindrical microelectrodes. Electrochem. Commun. 9, 1444–1450 (2006). doi: 10.1016/j.elecom.2007.02.003 CrossRefGoogle Scholar
  17. 17.
    Blackburn, F.R., Wang, C., Ediger, M.D.: Translational and rotational motion of probes in supercooled 1,3,5-tris(naphthyl)benzene. J. Phys. Chem. 100, 18249–18257 (1996). doi: 10.1021/jp9622041 CrossRefGoogle Scholar
  18. 18.
    Priasamy, N., Bicknese, S., Verkman, A.S.: Reversible photobleaching of fluorescein conjugates in air-atured viscous solutions: singlet and triplet state quenching by tryptophan. Photochem. Photobiol. 63, 265–271 (1996). doi: 10.1111/j.1751-1097.1996.tb03023.x CrossRefGoogle Scholar
  19. 19.
    Miao, W., Ding, Z., Bard, A.J.: Solution viscosity effects on the heterogeneous electron transfer kinetics of ferrocenemethanol in dimethyl sulfoxide-water mixtures. J. Phys. Chem. 106, 1392–1398 (2002). doi: 10.1021/jp013451u CrossRefGoogle Scholar
  20. 20.
    Hodgdon, J.A., Stillinger, F.H.: Stokes-Einstein violation in glass-forming liquids. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 50, 2064–2068 (1994). doi: 10.1103/PhysRevE.50.2064 Google Scholar
  21. 21.
    Tarjus, G., Kivelson, D.: Breakdown of the Stokes-Einstein relation in supercooled liquids. J. Chem. Phys. 103, 3071–3073 (1995). doi: 10.1063/1.470495 CrossRefGoogle Scholar
  22. 22.
    Chang, I., Sillescu, H.: Heterogeneity at the glass transition: translational and rotacional self-diffusion. J. Phys. Chem. 101, 8794–8801 (1997). doi: 10.1021/jp9640989 Google Scholar
  23. 23.
    Cicerone, M.T., Wagner, P.A., Ediger, M.D.: Translational diffusion on heterogeneous lattices: a model for dynamics in glass forming materials. J. Phys. Chem. B 101, 8727–8734 (1997). doi: 10.1021/jp970595t CrossRefGoogle Scholar
  24. 24.
    Xia, X., Wolynes, P.G.: Microscopic theory of heterogeneity and nonexponential relaxations in supercooled liquids. Phys. Rev. Lett. 86, 5526–5529 (2001). doi: 10.1103/PhysRevLett.86.5526 CrossRefGoogle Scholar
  25. 25.
    Xia, X., Wolynes, P.G.: Diffusion and the mesoscopic hydrodynamics of supercooled liquids. J. Phys. Chem. B 105, 6570–6573 (2001). doi: 10.1021/jp004616m CrossRefGoogle Scholar
  26. 26.
    Garrahan, J.P., Chandler, D.: Coarse-grained microscopic model of glass formers. Proc. Natl. Acad. Sci. USA 100, 9710–9714 (2003). doi: 10.1073/pnas.1233719100 CrossRefGoogle Scholar
  27. 27.
    Miller, D.P., Conrad, P.B., Fucito, S., de Pablo, J.J., Corti, H.R.: Electrical conductivity of supercooled aqueous mixtures of trehalose with sodium chloride. J. Phys. Chem. B 104, 1041–10425 (2000) doi: 10.1021/jp000730t Google Scholar
  28. 28.
    Longinotti, M.P., Mazzobre, M.F., Buera, M.P., Corti, H.R.: Effect of salts on the properties of aqueous sugar systems, in relation to biomaterial stabilization. 2. Sugar crystallization rate and electrical conductivity behaviour. Phys. Chem. Chem. Phys. 4, 533–540 (2002). doi: 10.1039/b107746e CrossRefGoogle Scholar
  29. 29.
    Spiro, M.: In: Rossiter, B.W., Hamilton, J.F. (eds.) Physical Methods of Chemistry, 5th edn. Interscience, New York (1984) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Departamento de Fisica de Materia Condensada, Centro Atómico ConstituyentesComisión Nacional de Energía AtómicaBuenos AiresArgentina
  2. 2.Instituto de Química Física de los Materiales, Ambiente y Energía (INQUIMAE), Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
  3. 3.Laboratorio de Electrónica Cuántica, Departamento de Física, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations