Journal of Solution Chemistry

, Volume 37, Issue 6, pp 801–833 | Cite as

High-Pressure Densities and Derived Volumetric Properties (Excess, Apparent and Partial Molar Volumes) of Binary Mixtures of Methanol + [BMIM][PF6]

  • I. M. Abdulagatov
  • A. Tekin
  • J. Safarov
  • A. Shahverdiyev
  • E. Hassel


The density of five (0.02297, 0.08317, 0.26147, 0.49343, 0.75255 mole fraction BMIMPF6) binary methanol + BMIMPF6 (1-n-butyl-3-methylimidazolium hexafluorophospate) mixtures have been measured with a vibrating-tube densimeter. Measurements were performed at temperatures from 298 to 398 K and at pressures up to 40 MPa. The total uncertainties of the density, temperature, pressure, and concentration (mole fractions) measurements were estimated to be less than 0.1 kg⋅m−3, 15 mK, 5 kPa, and 10−4, respectively. The uncertainties reported in this paper are expanded uncertainties at the 95% confidence level with a coverage factor of k=2. The measured densities were used to study of the effect of temperature, pressure, and concentration on the derived volumetric properties such as excess, apparent and partial molar volumes. It is shown that the values of excess molar volume for methanol + BMIMPF6 mixtures are negative at all measured temperatures and pressures in the whole concentration range. The measured densities were used to develop Tait-type equations of state for pure components and the mixtures. The structural properties such as direct and total correlation function integrals were calculated using the derived partial molar volumes at infinite dilution.


Apparent molar volume BMIMPF6 Density Methanol Equation of state Excess molar volume Ionic liquid Partial molar volume 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    MacFarlane, D.R., Seddon, K.R.: Ionic liquids-progress on the fundamental issues. Aust. J. Chem. 60, 3–5 (2007) Google Scholar
  2. 2.
    Deetlefs, M., Seddon, K.R.: Ionic liquids: fact and fiction. Chim. Oggi 24, 16–18 (2006) Google Scholar
  3. 3.
    Rogers, R.D., Seddon, K.R. (eds.): Ionic Liquids as Green Solvents: Progress and Prospects. ACS Symposium Series. ACS, Washington (2003) Google Scholar
  4. 4.
    Wasserscheid, P., Welton, T. (eds.): Ionic Liquids in Synthesis. Wiley-VCH, Weinheim (2003) Google Scholar
  5. 5.
    Rogers, R.D., Seddon, K.R.: Ionic liquids-solvents of the future? Science 302, 792–793 (2003) Google Scholar
  6. 6.
    Endres, F., Zein Al Abedin, S.: Air and water stable ionic liquids in physical chemistry. Phys. Chem. Chem. Phys. 8, 2101–2116 (2006) Google Scholar
  7. 7.
    Dupont, J., de Souza, R.F., Suarez, P.A.Z.: Ionic liquid (molten salt) phase organometallic catalysis. Chem. Rev. 102, 3667–3691 (2002) Google Scholar
  8. 8.
    Wang, P., Wenger, B., Humphry-Baker, R., Moster, J.-E., Teuscher, J., Kantlehner, W., Mezger, J., Stoyanov, E.V., Zakeeruddin, S.M., Graetzel, M.: Charge separation and efficient light energy conversion in sensitized mesoscopic solar cells based on binary ionic liquids. J. Am. Chem. Soc. 127, 6850–6856 (2005) Google Scholar
  9. 9.
    Wang, P., Zakeeruddin, S.M., Humphry-Baker, R., Graetzel, M.: A binary ionic liquid electrolyte to achieve ≥7% power conversion efficiencies in dye-sensitized solar cells. Chem. Mater. 16, 2694–2696 (2004) Google Scholar
  10. 10.
    Van Valkenburg, M.E.V., Vaughn, R.L., Williams, M., Wilkes, J.S.: Thermochemistry of ionic liquid heat-transfer fluids. Thermochim. Acta 425, 181–188 (2005) Google Scholar
  11. 11.
    Earle, M.J., Seddon, K.R.: Ionic liquids. Green solvents for the future. Pure Appl. Chem. 72, 1391–1398 (2001) Google Scholar
  12. 12.
    Marczak, W., Verevkin, S.P., Heintz, A.: Enthalpies of solution of organic solutes in the ionic liquid 1-methyl-3-ethyl-imidazolium bis-(trifluoromethyl-sulfonyl) amide. J. Solution Chem. 32, 519–526 (2001) Google Scholar
  13. 13.
    Heintz, A., Kulikov, D.V., Verevkin, S.P.: Thermodynamic properties of mixtures containing ionic liquids. 1. Activity coefficients at infinite dilution of alkanes, alkenes, and alkylbenzenes in 4-methyl-n-butylpyridinium tetrafluoroborate using gas-liquid chromatography. J. Chem. Eng. Data 46, 1526–1529 (2001) Google Scholar
  14. 14.
    Domanska, U., Marciniak, A.: Solubility of ionic liquid [emim][PF6] in alcohols. J. Phys. Chem. B 108, 2376–2382 (2004) Google Scholar
  15. 15.
    Crosthwaite, J.M., Aki, S.N.V.K., Maginn, E.J., Brennecke, J.F.: Liquid phase behavior of imidazolium-based ionic liquids with alcohols. J. Phys. Chem. B 108, 5113–5119 (2004) Google Scholar
  16. 16.
    Crosthwaite, J.M., Muldoon, M.J., Aki, S.N.V.K., Maginn, E.J., Brennecke, J.F.: Liquid phase behavior of ionic liquids with alcohols: experimental studies and modeling. J. Phys. Chem. B 110, 9354–9361 (2006) Google Scholar
  17. 17.
    Annat, G., MacFarlane, D.R., Forsyth, M.: Transport properties in ionic liquids and ionic liquid mixtures: the challenges of NMR pulsed field gradient diffusion measurements. J. Phys. Chem. B 111, 9018–9024 (2007) Google Scholar
  18. 18.
    Heintz, A.: Recent developments in thermodynamics and thermophysics of non-aqueous mixtures containing ionic liquids. A review. J. Chem. Thermodyn. 37, 525–535 (2005) Google Scholar
  19. 19.
    Aki, S.N.V.K., Mellein, B.R., Saurer, E.M., Brennecke, J.F.: High-pressure phase behavior of carbon dioxide with imidazolium-based ionic liquids. J. Phys. Chem. B 108, 20355–20365 (2004) Google Scholar
  20. 20.
    Lopes, J.N.C., Cordeiro, T.C., Esperanca, J.M.S.S., Guedes, H.J.R., Huq, S., Rebelo, L.P.N., Seddon, K.R.: Deviations from ideality in mixtures of two ionic liquids containing a common ion. J. Phys. Chem. 109, 3519–3525 (2005) Google Scholar
  21. 21.
    Huddleston, J.G., Visser, A.E., Reichert, W.M., Willauer, H.D., Broker, G.A., Rogers, R.D.: Characterization and comparison of hydrophilic and hydrophobic room-temperature ionic liquids incorporating the imidazolium cation. Green Chem. 3, 156–164 (2001) Google Scholar
  22. 22.
    Blanchard, L.A., Gu, Z., Brennecke, J.F.: High-pressure phase behavior of ionic liquid/CO2 system. J. Phys. Chem. B 105, 2437–2444 (2001) Google Scholar
  23. 23.
    Chun, S., Dzyuba, S.V., Bartsch, R.A.: Influence of structural variation in room-temperature ionic liquids on the selectivity and efficiency of competitive alkali metal salt extraction by a crown ether. Anal. Chem. 73, 3737–3741 (2001) Google Scholar
  24. 24.
    Gu, Z., Brennecke, J.F.: Volume expansivities and isothermal compressibilities of imidazolium and pyridinium-based ionic liquids. J. Chem. Eng. Data 47, 339–345 (2002) Google Scholar
  25. 25.
    Kabo, G.J., Blokhin, A.V., Paulechka, Y.U., Kabo, A.G., Shymanovich, M.P., Magee, J.W.: Thermodynamic properties of 1-butyl-3-methylimidazolium hexafluorophosphate in the condensed state. J. Chem. Eng. Data 49, 453–461 (2004) Google Scholar
  26. 26.
    Wang, J., Zhu, A., Zhuo, K.: Excess molar volumes and excess logarithm viscosities for binary mixtures of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate with some organic compounds. J. Solution Chem. 34, 585–596 (2005) Google Scholar
  27. 27.
    Kumelan, J., Kamps, A.P.-S., Tuma, D., Maurer, G.: Solubility of CO in the ionic liquid [bmim][PF6]. Fluid Phase Equilib. 228–229, 207–211 (2005) Google Scholar
  28. 28.
    Harris, K.R., Woolf, L.A., Kanakubo, M.: Temperature and pressure dependence of the viscosity of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. J. Chem. Eng. Data 50, 1777–1782 (2005) Google Scholar
  29. 29.
    Zafarani-Moattar, M.T., Shekaari, H.: Volumetric and speed of sound of ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate with acetonitrile and methanol at T (298.15 to 318.15). K. J. Chem. Eng. Data 50, 1694–1699 (2005) Google Scholar
  30. 30.
    Tokuda, H., Hayamizu, K., Ishii, K., Susan, M.A.B.H., Watanabe, M.: Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J. Phys. Chem. B. 108, 16593–16600 (2004) Google Scholar
  31. 31.
    Jacquemin, J., Husson, P., Majer, V., Costa Gomes, M.F.: Low-pressure solubilities and thermodynamics of solvation of eight gases in 1-butyl-3-methylimidazolium hexafluorophosphate. Fluid Phase Equilib. 240, 87–95 (2006) Google Scholar
  32. 32.
    Troncoso, J., Cerdeirina, C.A., Sanmamed, Y.A., Romani, L., Rebelo, L.P.N.: Thermodynamic properties of imidazolium-based ionic liquids: densities, heat capacities, and enthalpies of fusion of [bmim][PF6] and [bmim][NTf2]. J. Chem. Eng. Data 51, 1856–1859 (2006) Google Scholar
  33. 33.
    Tomida, D., Kumagai, A., Qiao, K., Yokoyama, C.: Viscosity of [bmim][PF6] and [bmim][BF4] at high pressure. Int. J. Thermophys. 27, 39–47 (2006) Google Scholar
  34. 34.
    Zafarani-Moattar, M.T., Shekaari, H.: Volumetric and compressibility behaviour of ionic liquid, 1-n-butyl-3-methylimidazolium hexafluorophosphate and tetrabutylammonium hexafluorophosphate in organic solvents at T=298.15 K. J. Chem. Thermodyn. 38, 624–633 (2006) Google Scholar
  35. 35.
    Zhong, Y., Wang, H., Diao, K.: Densities and excess volumes of binary mixtures of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate with aromatic compound at T=(298.15 to 313.15). K. J. Chem. Thermodyn. 39, 291–296 (2007) Google Scholar
  36. 36.
    Navia, P., Troncoso, J., Romani, L.J.: Excess magnitudes for ionic liquid binary mixtures with a common ion. J. Chem. Eng. Data 52, 1369–1374 (2007) Google Scholar
  37. 37.
    Pereiro, A.B., Rodriguez, A.: Experimental liquid-liquid equilibria of 1-alkyl-3-methylimidazolium hexafluorophosphate with 1-alcohols. J. Chem. Eng. Data 52, 1408–1412 (2007) Google Scholar
  38. 38.
    Pereiro, A.B., Rodriguez, A.: Study on the phase behaviour and thermodynamic properties of ionic liquids containing imidazolium cation with ethanol at several temperatures. J. Chem. Thermodyn. 39, 978–989 (2007) Google Scholar
  39. 39.
    Tomida, D., Kenmochi, S., Tsukada, T., Qiao, K., Yokoyama, C.: Thermal conductivities of [bmim][PF6], [hmim][PF6], and [omim][PF6] from 294 to 335 K at pressures up to 20 MPa. Int. J. Thermophys. 28, 1147–1160 (2007) Google Scholar
  40. 40.
    Pereiro, A.B., Rodriguez, A.: Thermodynamic properties of ionic liquids in organic solvents from (293.15 to 303.15). K. J. Chem. Eng. Data 52, 600–608 (2007) Google Scholar
  41. 41.
    Jacquemin, J., Husson, P., Padua, A.A.H., Majer, V.: Density and viscosity of several pure and water-saturated ionic liquids. Green Chem. 8, 172–180 (2006) Google Scholar
  42. 42.
    Tokuda, H., Tsuzuki, S., Susan, M.A.B.H., Hayamizu, K., Watanabe, M.: How ionic are room-temperature ionic liquids? An indicator of the physicochemical properties. J. Phys. Chem. B 110, 19593–19600 (2006) Google Scholar
  43. 43.
    Dzyuba, S.V., Bartsch, R.A.: Influence of structural variations in 1-alkyl(aralkyl)-3-methylimidazolium hexafluorophosphates and bis(trifluoromethyl-sullfonyl)imides on physical properties of the ionic liquids. Chem. Phys. Chem. 3, 161–166 (2002) Google Scholar
  44. 44.
    de Azevedo, R.G., Esperanca, J.M.S.S., Najdanovic-Visak, V., Visak, Z.P., Guedes, H.J.R., da Ponte, M.N., Rebelo, L.P.N.J.: Thermophysical and thermodynamic properties of 1-butyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium hexafluorophosphate over an extended pressure range. J. Chem. Eng. Data 50, 997–1008 (2005) Google Scholar
  45. 45.
    Kratky, O., Leopold, H., Stabinger, H.H.: Dichtemessungen an Fluessigkeiten und Gasen auf 10−6 g/cm3 bei 0.6 cm3 Praeparatvolumen. Z. Angew. Phys. 27, 273 (1969) Google Scholar
  46. 46.
    Majer, V., Pádua, A.A.H.: In: Goodwin, A.R.H., Marsh, K.N., Wakeham, W.A. (eds.) Measurement of the Thermodynamic Properties of Single Phases, pp. 149–168. Elsevier Science & Technology, New York (2003) Google Scholar
  47. 47.
    Ihmels, E.C., Gmehling, J.: Density of toluene, carbon dioxide, carbonyl sulfide, and hydrogen sulfide over a wide temperature and pressure range in the sub- and supercritical state. Ind. Eng. Chem. Res. 40, 4470–4477 (2001) Google Scholar
  48. 48.
    Abdulagatov, I.M., Tekin, A., Safarov, J., Shahverdiyev, A., Hassel, E.: Densities, excess, apparent, and partial molar volumes of binary mixtures of ethanol + [BMIM][BF4] as a function of temperature, pressure, and concentration. Int. J. Thermophys. (2007, in press) Google Scholar
  49. 49.
    Wagner, W., Pruß, A.: The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31, 387–535 (2002) Google Scholar
  50. 50.
    Lemmon, E.W., Span, R.: Short fundamental equations of state for 20 industrial fluids. J. Chem. Eng. Data 51, 785–850 (2006) Google Scholar
  51. 51.
    Seddon, K.R., Stark, A., Torres, M.-J.: Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl. Chem. 72, 2275–2287 (2000) Google Scholar
  52. 52.
    Sanmamed, Y.A., Gonzalez-Salagado, D., Troncoso, J., Cerdeirina, C.A., Romani, L.: Viscosity-induced errors in the density determination of room temperature ionic liquids using vibrating tube densitometry. Fluid Phase Equilib. 252, 96–102 (2007) Google Scholar
  53. 53.
    Widegren, J.A., Laesecke, A., Magee, J.W.: The effect of dissolved water on the viscosities of hydrophobic room-temperature ionic liquids. Chem. Commun. 1610–1612 (2005) Google Scholar
  54. 54.
    Marsh, K.N., Boxall, J.A., Lichtenthaler, R.: Room-temperature ionic liquids and their mixtures—a review. Fluid Phase Equilib. 219, 93–98 (2004) Google Scholar
  55. 55.
    Suarez, P.A.Z., Einloft, S., Dullius, H.E.L., de Souza, R.F., Dupont, J.: Synthesis and physical–chemical properties of ionic liquids based on 1-n-bytil-3-methylimidazolium cation. J. Chim. Phys. 95, 1626–1639 (1998) Google Scholar
  56. 56.
    Seddon, K., Stark, A., Torres, M.-J.: Viscosity and density of 1-alkyl-3-methylimidazolium ionic liquids. In: Abraham, M., Moens, L. (eds.) Clean Solvent: Alternative Media for Chemical Reactions and Processing. ACS Symposium Series, Chap. 4, pp. 34–49. ACS, Washington (2002) Google Scholar
  57. 57.
    Zafarani-Moattar, M.T., Shekaari, H.: Application of Prigogine Flory Patterson theory to excess molar volume and speed of sound of 1-n-butyl-3-methylimidazolium hexafluorophosphate or 1-n-butyl-3-methylimidazolium tetrafluoroborate in methanol and acetonitrile. J. Chem. Thermodyn. 38, 1377–1384 (2006) Google Scholar
  58. 58.
    Zubarev, V.N., Prusakov, P.G., Sergeev, L.V.: Thermophysical Properties of Methyl Alcohol. GSSSD, Moscow (1973) Google Scholar
  59. 59.
    de Reuck, K.M., Craven, R.J.B.: Methanol. International Thermodynamic Tables of the Fluid State-12. Blackwell Scientific, Oxford (1993) Google Scholar
  60. 60.
    Gardas, R.L., Freire, M.G., Carvalho, P.J., Marrucho, I.M., Fonseca, I.M.A., Ferreira, A.G.M., Coutinho, J.A.P.J.: High-pressure densities and derived thermodynamic properties of imidazolium-based ionic liquids. J. Chem. Eng. Data 52, 80–88 (2007) Google Scholar
  61. 61.
    Assael, M.J., Dymond, J.H., Exadaktilou, D.: An improved representation for n-alkane liquid densities. Int. J. Thermophys. 15, 155–164 (1994) Google Scholar
  62. 62.
    Dymond, J.H., Malhotra, R.: Densities of n-alkanes and their mixtures at elevated pressures. Int. J. Thermophys. 8, 541–555 (1987) Google Scholar
  63. 63.
    Dymond, J.H., Malhotra, R.: The Tait equation: 100 years on. Int. J. Thermophys. 9, 941–951 (1988) Google Scholar
  64. 64.
    Dymond, J.H., Malhotra, R., Isdale, J.D., Glen, N.F.: (p, ρ, T) of n-heptane, toluene, and oct-1-ene in the range 298 to 373 K and 0.1 to 400 MPa and representation by the Tait equation. J. Chem. Thermodyn. 20, 603–614 (1988) Google Scholar
  65. 65.
    Kumagai, A., Date, K., Iwasaki, H.: Tait equation for liquid ammonia. J. Chem. Eng. Data 21, 226–227 (1976) Google Scholar
  66. 66.
    Albert, H.J., Gates, J.A., Wood, R.H., Grolier, J.-P.E.: Densities of toluene, of butanol and their binary mixtures from 298 K to 400 K, and from 0.5 to 20 MPa. Fluid Phase Equilib. 20, 321–330 (1985) Google Scholar
  67. 67.
    Abdulagatov, I.M., Azizov, N.D.: Volumetric properties of the binary n-heptane + ethylbenzine mixture at high temperatures and high pressures. J. Therm. Anal. Calorim. 87, 483–492 (2007) Google Scholar
  68. 68.
    Abdulagatov, I.M., Azizov, N.D.: (p, ρ, T, x) and viscosity measurements of {x 1 n-heptane+(1−x 1) n-octane} mixtures at high temperatures and high pressures. J. Chem. Thermodyn. 38, 1402–1415 (2006) Google Scholar
  69. 69.
    Abdulagatov, I.M., Azizov, N.D.: PVTx measurements and partial molar volumes for aqueous Li2SO4 solutions at temperatures from 297 to 573 K and pressures up to 40 MPa. Int. J. Thermophys. 24, 1581–1610 (2003) Google Scholar
  70. 70.
    Abdulagatov, I.M., Azizov, N.D.: Densities and apparent molar volumes of NaClO4(aq) at temperatures from 298 to 573 K and at pressures up to 38 MPa. High Temp. High Press. 35/36, 477–498 (2003/2004) Google Scholar
  71. 71.
    Redlich, O., Mayer, D.M.: The molal volumes of electrolytes. Chem. Rev. 64, 221–227 (1964) Google Scholar
  72. 72.
    Roux, A., Musbally, G.M., Perron, G., Desnoyers, J.E.: Apparent molar heat capacities and volumes of aqueous electrolytes at 25 C: NaClO3, NaClO4, NaNO3, NaBrO3, NaIO3, KClO3, KBrO3, KIO3, NH4NO3, NH4Cl, and NH4ClO4. Can. J. Chem. 56, 24–28 (1978) Google Scholar
  73. 73.
    Pitzer, K.S.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77, 268–277 (1973) Google Scholar
  74. 74.
    Bradley, D.J., Pitzer, K.S.: Thermodynamics of electrolytes. 12. Dielectric properties of water and Debye-Hueckel parameters to 350 °C and 1 kbar. J. Phys. Chem. 83, 1599–1603 (1979) Google Scholar
  75. 75.
    Chialvo, A.A., Cummings, P.T.: Comment on “Near critical phase behaviour of dilute mixtures”. Mol. Phys. 84, 41–48 (1995) Google Scholar
  76. 76.
    Brelvi, S.W., O’Connell, J.P.: Correspondling states correlations for liquid compressibility and partial molal volumes of gases at infinite dilution in liquids. AIChE J. 18, 1239–1243 (1972) Google Scholar
  77. 77.
    McGuigan, D.B., Monson, P.A.: Analysis of infinite dilution partial molar volumes using a distribution function theory. Fluid Phase Equilib. 57, 227–247 (1990) Google Scholar
  78. 78.
    Kirkwood, J.G., Buff, F.P.: The statistical mechanical theory of solutions. I. J. Chem. Phys. 19, 774–777 (1951) Google Scholar
  79. 79.
    Ben-Naim, A.: Water and Aqueous Solutions. Plenum, New York (1974) Google Scholar
  80. 80.
    Munster, A.: In: Burgess, R.E. (ed.) Fluctuation Phenomena in Solids. Academic Press, New York (1965) Google Scholar
  81. 81.
    González, E.J., Alonso, L., Domínguez, A.: Physical properties of binary mixtures of the ionic liquid 1-methyl-3coctylimidazolium chloride with methanol, ethanol, and 1-propanol at T=(298.15, 313.15, and 328.15) K and at P=0.1 MPa. J. Chem. Eng. Data 51, 1446–1452 (2006) Google Scholar
  82. 82.
    Osada, O., Sato, M., Uematsu, M.: Thermodynamic properties of {xCH3OH+(1−x)H2O} with x=(1.0000 and 0.4993) in the temperature range from 320 K to 420 K at pressures to 200 MPa. J. Chem. Thermodyn. 31, 451–464 (1999) Google Scholar
  83. 83.
    Machado, J.R.S., Streett, W.B.: Equation of state and thermodynamic properties of liquid methanol from 298 to 489 K and pressures to 1040 bar. J. Chem. Eng. Data 28, 218–223 (1983) Google Scholar
  84. 84.
    Sun, T.F., Schouten, J.A., Trappeniers, N.J., Biswas, S.N.: Measurements of the densities of liquid benzene, cyclohexane, methanol, and ethanol as functions of temperature at 0.1 MPa. J. Chem. Theremodyn. 20, 1089–1096 (1988) Google Scholar
  85. 85.
    Ulbricht, W.: Exzeßenthalpie, freie Exzeßenthalpie, Exzeßvolumen und Viskosität von ausgewählten binären flüssigen Mischungen. Chem. Tech. 28, 350–353 (1976) Google Scholar
  86. 86.
    Yokoyama, O., Uematsu, M.: Thermodynamic properties of {xCH3OH+(1−x)H2O} with x=(1.0000, 0.8005, 0.4002, and 0.3034) in the temperature range from 320 K to 420 K at pressures to 200 MPa. J. Chem. Thermodyn. 35, 813–823 (2003) Google Scholar
  87. 87.
    Valtz, A., Coquelet, C., Richon, D.: Volumetric properties of the monoethanolamine methanol mixture at atmospheric pressure from 283.15 to 353.15 K. Thermochim. Acta 428, 185–191 (2005) Google Scholar
  88. 88.
    Benson, G.C., Kiyohara, O.: Thermodynamic of aqueous mixtures of nonelectrolytes. I. Excess volumes of water-n-alcohol mixtures at several temperatures. J. Solution Chem. 9, 791–804 (1980) Google Scholar
  89. 89.
    Uosaki, Y., Motoki, T., Hamaguchi, T., Moriyoshi, T.: Excess molar volumes of binary mixtures of 1,3-dimethylimidazolidin-2-one with an alkan-1-ol at the temperatures 283.15 K, 298.15 K, and 313.15 K. J. Chem. Thermodyn. 39, 810–816 (2007) Google Scholar
  90. 90.
    Yang, C., Lai, H., Liu, Z., Ma, P.: Densities and viscosities of diethyl carbonate + toluene, + methanol, and + 2-propanol from (293.15 to 363.15) K. J. Chem. Eng. Data 51, 584–589 (2006) Google Scholar
  91. 91.
    Yang, C., Yu, W., Tang, D.: Densities and viscosities of binary mixtures of m-cresol with ethylene glycol or methanol over several temperatures. J. Chem. Eng. Data 51, 935–939 (2006) Google Scholar
  92. 92.
    Kubota, H., Tanaka, Y., Makita, T.: Volumetric behavior of pure alcohols and their water mixtures under pressure. Int. J. Thermophys. 8, 47–70 (1987) Google Scholar
  93. 93.
    Bridgman, P.W.: Thermodynamic properties of twelve liquids between 20 degrees and 80 degrees and up to 12000 kgm. Proc. Am. Acad. Arts Sci. 49, 3–114 (1913) Google Scholar
  94. 94.
    Bhuiyan, M.M.H., Ferdaush, J., Uddin, M.H.: Densities and viscosities of binary mixtures of {dimethylsulfoxide + aliphatic lower alkanols (C1,C3)} at temperatures from T=303.15 K to T=323.15 K. J. Chem. Thermodyn. 39, 675–683 (2007) Google Scholar
  95. 95.
    Golubev, I.F.: Study of the specific volumes of liquids and gases at high pressures by the hydrostatic weighing method. Tr. GIAP 7, 47–61 (1957) Google Scholar
  96. 96.
    Aliev, M.M., Magee, J.W., Abdulagatov, I.M.: Volumetric (PVT) and calorimetric (CvVT) measurements for pure methanol in the liquid phase. Int. J. Thermophys. 24, 1527–1549 (2003) Google Scholar
  97. 97.
    Kuroki, T., Kagawa, N., Endo, H., Tsuruno, S., Magee, J.: Specific heat capacity at constant volume for water, methanol, and their mixtures at temperatures from 300 to 400 K and pressures to 20 MPa. J. Chem. Eng. Data 46, 1101–1106 (2001) Google Scholar
  98. 98.
    Oswal, S.L., Putta, S.S.R.: Excess molar volumes of binary mixtures of alkanols with ethyl acetate from 298.15 to 323.15 K. Thermochim. Acta 373, 141–152 (2001) Google Scholar
  99. 99.
    Tu, C.-H., Lee, S.-L., Peng, I.-H.: Excess volumes and viscosities of binary mixtures of aliphatic alcohols (C1–C4) with nitromethane. J. Chem. Eng. Data 46, 151–155 (2001) Google Scholar
  100. 100.
    Orge, B., Rodriguez, A., Canosa, J.M., Marino, G., Iglesias, M., Tojo, J.: Variation of densities, refractive indices, and speeds of sound with temperature of methanol or ethanol with hexane, heptane, and octane. J. Chem. Eng. Data 44, 1041–1047 (1999) Google Scholar
  101. 101.
    Garriga, R., Sanchez, F., Perez, P., Gracia, M.: Vapour pressures at eight temperatures between 278.15 K and 323.15 K and excess molar enthalpies and volumes at T=298.15 K of (n-propylether + methanol). J. Chem. Thermodyn. 29, 649–659 (1997) Google Scholar
  102. 102.
    Esteve, X., Olive, F., Patil, K.R., Chaudhari, S.K., Coronas, A.: Densities and viscosities of the binary mixtures of interest for absorption refrigeration systems and heat pumps. Fluid Phase Equilib. 110, 369–382 (1995) Google Scholar
  103. 103.
    Galicia-Luna, L.A., Richon, D., Renon, H.: New loading technique for a vibrating tube densimeter and measurements of liquid densities up to 39.5 MPa for binary and ternary mixtures of the carbon dioxide-methanol-propane system. J. Chem. Eng. Data 39, 424–431 (1994) Google Scholar
  104. 104.
    Ukai, T., Kodama, D., Miyazaki, J., Kato, M.: Solubility of methane in alcohols and saturated density at 280.15 K. J. Chem. Eng. Data 47, 1320–1323 (2002) Google Scholar
  105. 105.
    Papaioannou, D., Panayiotou, C.: Viscosity of binary mixtures of propylamine with alkanols at moderately high pressures. J. Chem. Eng. Data 40, 202–209 (1995) Google Scholar
  106. 106.
    Hruby, J., Klomfar, J., Sifner, O.: (T, p, ρ) relation of liquid methanol from 205 K to 321 K and pressures up to 50 MPa. J. Chem. Thermodyn. 25, 1229–1242 (1993) Google Scholar
  107. 107.
    Valtz, A., Teodorescu, M., Wichterle, I., Richon, D.: Liquid densities and excess molar volumes for water + diethylene glycolamine, and water, methanol, ethanol, 1-propanol + triethylene glycol binary systems at atmospheric pressure and temperatures in the range of 283.15–363.15 K. Fluid Phase Equilib. 215, 129–142 (2004) Google Scholar
  108. 108.
    Pereira, S.M., Rivas, M.A., Iglesias, T.P.: Speeds of sound, densities, and isentropic compressibilities of the system methanol + tetraethylene glycol dimethyl ether at the temperatures from 293.15 K to 333.15 K. J. Chem. Eng. Data 47, 1363–1366 (2002) Google Scholar
  109. 109.
    Ihmels, E.C., Safarov, J., Hassel, E., Gmehling, J.: (p, ρ, T) properties, and apparent molar volumes V φ of ZnBr2 in methanol at T=(298.15 to 398.15) K and pressures up to p=40 MPa. J. Chem. Thermodyn. 37, 1318–1326 (2005) Google Scholar
  110. 110.
    Tekin, A., Safarov, J., Shahverdiyev, A., Hassel, E.: (p, ρ, T) Properties of 1-butyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium hexafluorophosphate at T=(298.15 to 398.15 K) and pressures up to p=40 MPa. J. Mol. Liq. 136, 177–182 (2007) Google Scholar
  111. 111.
    Magee, W.J., Abdulagatov, I.M.: Fluid properties simulation challenge. Recommendations for problem II (i): methanol (0.50 mass fraction) + water (0.50 mass fraction). Fluid Phase Equilib. 217, 45–48 (2004) Google Scholar
  112. 112.
    Inglesias-Otero, M.A., Troncoso, J., Carballo, E.: Density and refractive index for binary systems of the ionic liquid [Bmim][BF4] with methanol, 1,3-dichloropropane, and dimethyl carbonate. J. Solution Chem. 36, 1219–1230 (2007) Google Scholar
  113. 113.
    Blanco, A.M., Ortega, J.: Experimental study of miscibility, density and isobaric vapor-liquid equilibrium values for mixtures of methanol in hydrocarbons (C5, C6). Fluid Phase Equilib. 122, 207–222 (1996) Google Scholar
  114. 114.
    Orge, B., Iglesias, M., Rodrígues, A., Canosa, J., Tojo, J.: Mixing properties of (methanol, ethanol, or 1-propanol) with (n-pentane, n-hexane, n-heptane and n-octane) at 298.15 K. Fluid Phase Equilib. 133, 213–227 (1997) Google Scholar
  115. 115.
    Atik, Z.: Experimental and predicted volumetric and refractive index properties of ternary mixtures of iodoethane with toluene and alcohols at temperature 298.15 K and pressure 101 kPa. J. Chem. Thermodyn. 38, 201–208 (2006) Google Scholar
  116. 116.
    Han, K.-J., Oh, J.-H., Park, S.-J.: Densities and viscosities for the ternary systems of methyl tert-bytil ether + methanol + benzene and methyl tert-bytil ether + methanol + toluene and their sub-binary systems at 298.15 K. J. Chem. Eng. Data 51, 1339–1344 (2006) Google Scholar
  117. 117.
    Rodrígues, A., Canosa, J., Tojo, J.: Density, refractive index on mixing, and speed of sound of the ternary mixtures (dimethyl carbonate or diethyl carbonate + methanol + toluene) and the corresponding binaries at T=298.15 K. J. Chem. Thermodyn. 33, 1383–1397 (2001) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • I. M. Abdulagatov
    • 1
  • A. Tekin
    • 2
  • J. Safarov
    • 3
    • 4
  • A. Shahverdiyev
    • 3
  • E. Hassel
    • 4
  1. 1.Physical and Chemical Properties DivisionNational Institute of Standards and TechnologyBoulderUSA
  2. 2.Erciyes UniversityKayseriTurkey
  3. 3.Azerbaijan Technical UniversityBakuAzerbaijan
  4. 4.Lehrstuhl für Technische ThermodynamikUniversität RostockRostockGermany

Personalised recommendations