Journal of Solution Chemistry

, Volume 37, Issue 6, pp 749–762 | Cite as

The Examination of the Activity Coefficients of Cu(II) Complexes with OH and Cl in NaClO4 Using Pitzer Equations: Application to Other Divalent Cations

  • J. M. Santana-Casiano
  • M. González-Dávila
  • F. J. Millero
Article

Abstract

The stability constants for the hydrolysis of Cu(II) and formation of chloride complexes in NaClO4 solution, at 25 °C, have been examined using the Pitzer equations. The calculated activity coefficients of CuOH+, Cu(OH)2, Cu2(OH)3+, Cu2(OH) 2 2+ , CuCl+ and CuCl2 have been used to determine the Pitzer parameter (β i (0) , β i (1) , and C i ) for these complexes. These parameters yield values for the hydrolysis constants (log 10 β 1 * , log 10 β 2 * , log 10 β 2,1 * and log 10 β 2,2 * ) and the formation of the chloride complexes (log 10 β CuCl * and \(\log_{10}\beta_{\mathrm{CuCl}_{2}}^{\mathrm{*}})\) that agree with the experimental measurements, respectively to ±0.01,±0.02,±0.03,±0.06,±0.03 and ±0.07.

The stability constants for the hydrolysis and chloride complexes of Cu(II) were found to be related to those of other divalent metals over a wide range of ionic strength. This has allowed us to use the calculated Pitzer parameters for copper complexes to model the stability constants and activity coefficients of hydroxide and chloride complexes of other divalent metals. The applicability of the Pitzer Cu(II) model to the ionic strength dependence of hydrolysis of zinc and cadmium is presented. The resulting thermodynamic hydroxide and chloride constants for zinc are \(\log_{10}\beta_{\mathrm{ZnOH}^{+}}=-9.04\pm0.04\) and \(\log_{10}\beta_{\mathrm{Zn(OH)}_{2}}=-16.90\pm0.02\) . For cadmium the thermodynamic hydrolysis constants are \(\log_{10}\beta_{\mathrm{CdOH}^{+}}=-10.24\pm0.05\) and \(\log_{10}\beta_{\mathrm{Cd(OH)}_{2}}=-20.42\pm0.07\) . The Cu(II) model allows one to determine the stability of other divalent metal complexes over a wide range of concentration when little experimental data are available. More reliable stepwise stability constants for divalent metals are needed to test the linearity found for the chloro complexes.

Keywords

Copper complexes Chloride complexes Cu(II) hydrolysis Stability complexes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Campbell, P.G.C.: Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model. In: Tessier, A., Turner, D.R. (eds.) Metal Speciation and Bioavailability in Aquatic Systems. Wiley, New York (1995) Google Scholar
  2. 2.
    Sunda, W., Guillard, R.R.L.: The relationship between cupric ion activity and the toxicity of copper to phytoplankton. J. Mar. Res. 134, 511–529 (1976) Google Scholar
  3. 3.
    Morel, F.M.M., Morel-Laurens, N.M.L.: Trace metals and plankton in the oceans. Facts and speculations. In: Wong, C.S., Boyle, E., Bruland, K.W., Burton, J.D., Goldberg, E.D. (eds.) Trace Metals in Sea Water. NATO Conference Series IV, Marine Sciences, pp. 841–869. Plenum Press, New York (1983) Google Scholar
  4. 4.
    Brand, L.E., Sunda, W.G., Guillard, R.R.L.: Reduction of marine phytoplankton reproduction rates by copper and cadmium. J. Exp. Mar. Biol. Ecol. 96, 225–250 (1986) CrossRefGoogle Scholar
  5. 5.
    Verweij, W.: Speciation and bioavailability of copper in lake Tjeukemeer. Ph.D. thesis, University of Wageningen, The Netherlands (1991), 143 pp Google Scholar
  6. 6.
    Blust, R., Fontaine, A., Declair, W.: Effect of hydrogen ions and inorganic complexing on the uptake of copper by the brine shrimp Artemia franciscana. Mar. Ecol. Prog. Ser. 76, 273–282 (1991) CrossRefGoogle Scholar
  7. 7.
    Seritti, A., Pellegrini, D., Morelli, E., Barghigiani, C., Ferrara, R.: Copper complexing capacity of phytoplanktonic cell exudates. Mar. Chem. 18, 351–357 (1986) CrossRefGoogle Scholar
  8. 8.
    Brown, L.N., Robinson, M.G., Hall, B.D.: Mechanisms for copper tolerance in Amhora coffeaeformis—internal and external binding. Mar. Biol. 97, 581–586 (1988) CrossRefGoogle Scholar
  9. 9.
    Zhou, X., Slauenwhite, D.E., Pett, R.J., Wangersky, P.J.: Production of copper-complexing organic ligands during a diatom bloom: tower tank and batch-culture experiments. Mar. Chem. 27, 19–30 (1989) CrossRefGoogle Scholar
  10. 10.
    Zhou, X., Wangersky, P.J.: Production of copper-complexing organic ligands by the marine diatom Phaeodactylum triconutum in a cage culture turbidostat. Mar. Chem. 26, 239–259 (1989) CrossRefGoogle Scholar
  11. 11.
    Gonzalez-Davila, M., Santana-Casiano, J.M., Laglera, L.M.: Copper adsorption in diatom cultures. Mar. Chem. 70, 161–170 (2000) CrossRefGoogle Scholar
  12. 12.
    Moffett, J.W., Zika, R.G.: Oxidation kinetics of Cu(I) in seawater: implications for its existence in the marine environment. Mar. Chem. 13, 239–251 (1983) CrossRefGoogle Scholar
  13. 13.
    Moffett, J.W., Zika, R.G.: Reduction kinetics of hydrogen peroxide with copper and iron in seawater. Environ. Sci. Technol. 21, 804–810 (1987) CrossRefGoogle Scholar
  14. 14.
    Zafiriou, O.C.: Marine organic photochemistry previewed. Mar. Chem. 5, 497–522 (1977) CrossRefGoogle Scholar
  15. 15.
    Zika, R.G.: Marine organic photochemistry. In: Duursma, E.K., Dawson, R. (eds.) Marine Organic Chemistry, pp. 299–325. Elsevier, Amsterdam (1981) Google Scholar
  16. 16.
    Millero, F.J.: The effect of ionic interactions on the oxidation of metals in natural waters. Geochim. Cosmochim. Acta 49, 547–553 (1985) CrossRefGoogle Scholar
  17. 17.
    Sharma, V.K., Millero, F.J.: Effect of ionic interactions on the rates of oxidation of Cu(I) with O2 in natural waters. Mar. Chem. 25, 141–161 (1988) CrossRefGoogle Scholar
  18. 18.
    Pitzer, K.S.: Activity Coefficients in Electrolyte Solutions, pp. 75–153. CRC Press, Boca Raton (1991) Google Scholar
  19. 19.
    Powell, K.J., Brown, P.L., Byrne, B.H., Gajda, T., Hefter, G., Sjöberg, S., Wanner, H.: Chemical speciation of environmentally significant metals with inorganic ligands. Part 2: The Cu2+-OH, Cl, SO42−, and PO43− systems. Pure Appl. Chem. 79, 895–950 (2007) CrossRefGoogle Scholar
  20. 20.
    Millero, F.J., Pierrot, D.: A chemical equilibrium model for natural waters. Aquat. Geochem. 4, 153–199 (1998) CrossRefGoogle Scholar
  21. 21.
    Kim, H.-T., Frederick, W.J.: Evaluation of Pitzer ion interaction parameters of aqueous electrolytes at 25 °C. 1. Single salt parameters. J. Chem. Eng. Data 33, 177–184 (1988) CrossRefGoogle Scholar
  22. 22.
    Møller, N.: The prediction of mineral solubilities in natural waters: a chemical equilibrium model for the Na-Ca-Cl-SO4-H2O system, to high temperature and concentration. Geochim. Cosmochim. Acta 52, 821–837 (1988) CrossRefGoogle Scholar
  23. 23.
    Baes, C.F., Mesmer, R.E.: The Hydrolysis of Cations, pp. 267–272. Wiley-Interscience, New York (1976) Google Scholar
  24. 24.
    Millero, F.J.: Use of models to determine ionic interactions in natural waters. Thalass. Jugosl. 18, 253–291 (1982) Google Scholar
  25. 25.
    Millero, F.J., Schreiber, D.R.: Use of the pairing model to estimate activity coefficients of the ionic components of natural waters. Am. J. Sci. 282, 1508–1540 (1982) Google Scholar
  26. 26.
    Millero, F.J., Hawke, D.J.: Ionic interactions of divalent metals in natural waters. Mar. Chem. 40, 19–48 (1992) CrossRefGoogle Scholar
  27. 27.
    Millero, F.J.: Stability constants for the formation of rare earth inorganic complexes as a function of ionic strength. Geochim. Cosmochim. Acta 56, 3123–3132 (1992) CrossRefGoogle Scholar
  28. 28.
    Smith, R.M., Martell, A.E.: Critical Stability Constants, Vol. 4, Inorganic Complexes, p. 257. Plenum Press, New York (1976) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • J. M. Santana-Casiano
    • 1
    • 2
  • M. González-Dávila
    • 1
    • 2
  • F. J. Millero
    • 1
  1. 1.Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiUSA
  2. 2.Departamento de Química, Facultad de Ciencias del MarUniversidad de Las Palmas de Gran CanariaLas PalmasSpain

Personalised recommendations