Journal of Solution Chemistry

, Volume 37, Issue 1, pp 85–96 | Cite as

New Physico-Chemical Properties of Extremely Dilute Solutions. A Conductivity Study at 25 °C in Relation to Ageing

  • V. EliaEmail author
  • E. Napoli
  • M. Niccoli
  • N. Marchettini
  • E. Tiezzi


The conductivity of extremely dilute solutions (EDS) was measured and studied in relation to the age of the solutions. The aim was to obtain information about the influence of succussive dilutions and succussions on the conductivity and structure of water. EDS are obtained by iteration of two processes: dilution 1:100 (mass basis) and succussion. The iteration is carried out until extreme dilutions are reached. We found significant increases in electrical conductivity with respect to the untreated demineralized water used as solvent, confirming the intriguing new behavior disclosed some time ago, namely the evolution of certain physico-chemical parameters with the age of the samples. We studied variations in electrical conductivity of samples up to two years old. Conductivities showed large variations reaching a pronounced maximum and, for several samples, then returning to their initial values. The latter fact suggests that the temporal evolution of this physico-chemical parameter does not stem from the slow attainment of an equilibrium condition, characterized by a minimum of energy, since that state, when reached, should be steady. These systems could be far from thermodynamic equilibrium, producing dissipative structures. In order to stay far from equilibrium, they need to dissipate energy. For reasons that are not yet clear, when modified environmental conditions prevent the necessary dissipation of energy, these systems return to their initial conditions. In the light of this interpretation, the succussion procedure may be the trigger for the formation of dissipative structures, the number and/or size of which increase with age, up to a certain point.


Conductivity Succussion Age of solutions Homeopathy Dissipative structures Water 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mishima, O., Stanley, H.E.: Decompression-induced melting of ice IV and the liquid–liquid transition in water. Nature 392, 164–168 (1998) CrossRefGoogle Scholar
  2. 2.
    Malescio, G., Franzese, G., Skibinsky, A., Buldyrev, V., Sergey, V., Stanley, H.E.: Liquid-liquid phase transition for an attractive isotropic potential with wide repulsive range. Phys. Rev. E 71, 061504/1–061504/8 (2005) CrossRefGoogle Scholar
  3. 3.
    Bakker, H.J., Kropman, M.F., Omta, A.W.: Effect of ions on the structure and dynamics of liquid water. J. Phys.: Condens. Matter 17, 3215–3224 (2005) CrossRefGoogle Scholar
  4. 4.
    Robinson, G.W., Cho, C.H., Gellene, G.I.: Refractive index mysteries of water. J. Phys. Chem. B 104, 7179–7182 (2000) CrossRefGoogle Scholar
  5. 5.
    Woutersen, S., Bakker, H.J.: Resonant intermolecular transfer of vibrational energy in liquid water. Nature 402, 507–509 (1999) CrossRefGoogle Scholar
  6. 6.
    Kropman, M.F., Bakker, H.J.: Dynamics of water molecules in aqueous solvation shells. Science 291, 2118–2120 (2000) CrossRefGoogle Scholar
  7. 7.
    Woutersen, S., Emmerichs, U., Bakker, H.J.: Femtosecond Mid-IR pump-probe spectroscopy of liquid water: evidence for a two-component structure. Science 278, 658–660 (1997) CrossRefGoogle Scholar
  8. 8.
    Gregory, J.K., Clary, D.C., Liu, K., Brown, M.G., Saykally, R.J.: The water dipole moment in water clusters. Science 275, 814–817 (1997) CrossRefGoogle Scholar
  9. 9.
    Ropp, J., Lawrence, C., Farrar, T.C., Skinner, J.L.: Rotational motion in liquid water is anisotropic: a nuclear magnetic resonance and molecular dynamics simulation study. J. Am. Chem. Soc. 123, 8047–8052 (2001) CrossRefGoogle Scholar
  10. 10.
    Errington, J.R., Debenedetti, P.G.: Relationship between structural order and the anomalies of liquid water. Nature 409, 318–321 (2001) CrossRefGoogle Scholar
  11. 11.
    Lobyshev, V.I., Shikhlinskaya, R.E., Ryzhikov, B.D.: Experimental evidence for intrinsic luminescence of water. J. Mol. Liq. 82, 73–81 (1999) CrossRefGoogle Scholar
  12. 12.
    Lobyshev, V.I., Solovey, A.B., Bulienkov, N.A.: Computer construction of modular structures of water. J. Mol. Liq. 106, 277–297 (2003) CrossRefGoogle Scholar
  13. 13.
    Samal, S., Geckeler, K.E.: Unexpected solute aggregation in water on dilution. Chem. Commun. 2224–2225 (2001) Google Scholar
  14. 14.
    Elia, V., Niccoli, M.: Thermodynamics of extremely dilute aqueous solutions. Ann. N.Y. Acad. Sci. 879, 241–248 (1999) CrossRefGoogle Scholar
  15. 15.
    Elia, V., Niccoli, M.: New physico-chemical properties of water induced by mechanical treatments. J. Therm. Anal. Calorim. 61, 527–537 (2000) CrossRefGoogle Scholar
  16. 16.
    Elia, V., Niccoli, M.: New physico-chemical properties of extremely diluted solutions. J. Therm. Anal. Calorim. 75, 815–836 (2004) CrossRefGoogle Scholar
  17. 17.
    Elia, V., Napoli, E., Niccoli, M., Nonatelli, L., Ramaglia, A., Ventimiglia, E.: New physico-chemical properties of extremely diluted aqueous solutions. A calorimetric and conductivity study at 25 °C. J. Therm. Anal. Calorim. 78, 331–342 (2004) CrossRefGoogle Scholar
  18. 18.
    Elia, V., Marchese, M., Montanino, M., Napoli, E., Niccoli, M., Nonatelli, L., Ramaglia, A.: Hydrohysteretic phenomenon of “extremely diluted solutions” induced by mechanical treatments. A calorimetric and conductometric study at 25 °C. J. Solution Chem. 34, 947–960 (2005) CrossRefGoogle Scholar
  19. 19.
    Elia, V., Elia, L., Cacace, P., Napoli, E., Niccoli, M., Savarese, F.: “Extremely diluted solutions” as multi-variable systems: a study of calorimetric and conductometric behaviour as a function of the time parameter. J. Therm. Anal. Calorim. 84, 317–323 (2006) CrossRefGoogle Scholar
  20. 20.
    Elia, V., Elia, L., Napoli, E., Niccoli, M.: Conductometric and calorimetric studies of serially diluted and agitated solutions: the dependence of intensive parameters on volume. Int. J. Ecodyn. 1, 1–12 (2006) CrossRefGoogle Scholar
  21. 21.
    Elia, V., Elia, L., Marchese, M., Montanino, M., Napoli, E., Niccoli, M., Nonatelli, L., Savarese, F.: Interaction of “extremely diluted solutions” with aqueous solutions of hydrochloric acid and sodium hydroxide. A calorimetric study at 298 K. J. Mol. Liq. 130, 15–20 (2007) CrossRefGoogle Scholar
  22. 22.
    Elia, V., Elia, L., Montanino, M., Napoli, E., Niccoli, M., Nonatelli, L.: Conductometric studies of the serially diluted and agitated solutions on an anomalous effect that depends on the dilution process. J. Mol. Liq. 135, 158–165 (2007) CrossRefGoogle Scholar
  23. 23.
    Lo, S.Y.: Anomalous state of ice. Mod. Phys. Lett. B 10, 909–919 (1996) CrossRefGoogle Scholar
  24. 24.
    Lo, S.Y., Lo, A., Chong, L.W., Tianzhang, L., Hua, L.H., Geng, X.: Physical properties of water with IE structure. Mod. Phys. Lett. B 10, 921–930 (1996) CrossRefGoogle Scholar
  25. 25.
    Rey, L.: Thermoluminescence of ultra-high dilutions of lithium chloride and sodium chloride. Physica A 323, 67–74 (2003) CrossRefGoogle Scholar
  26. 26.
    Nicolis, G.: Physics of far-equilibrium systems and self-organization. In: Davies, P. (ed.) The New Physics. Cambridge University Press, New York (1989) Google Scholar
  27. 27.
    De Grotthus, C.J.T.: The Grotthus mechanism. Ann. Chim. LVIII 58, 54–74 (1806) Google Scholar
  28. 28.
    Gileadi, E., Kirowa-Eisner, E.: Electrolytic conductivity—the hopping mechanism of the proton and beyond. Electrochim. Acta 51, 6003–6011 (2006) CrossRefGoogle Scholar
  29. 29.
    Light, T.S., Licht, S.L.: Conductivity and resistivity of water from the melting to critical point. Anal. Chem. 59, 2327–2330 (1987) CrossRefGoogle Scholar
  30. 30.
    Varian Spectra Manual Google Scholar
  31. 31.
    Prigogine, I.: Time, structure and fluctuations. Nobel lecture, 8 December (1977) Google Scholar
  32. 32.
    Magnani, A., Marchettini, N., Ristori, S., Rossi, C., Rossi, F., Rustici, M., Spalla, O., Tiezzi, E.: Chemical waves and pattern formation in the 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/water lamellar system. J. Am. Chem. Soc. 126, 11406–11407 (2004) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • V. Elia
    • 1
    Email author
  • E. Napoli
    • 1
  • M. Niccoli
    • 1
  • N. Marchettini
    • 2
  • E. Tiezzi
    • 2
  1. 1.Department of ChemistryUniversity “Federico II” of NaplesNaplesItaly
  2. 2.Department of Chemical and Biosystem ScienceUniversity of SienaSienaItaly

Personalised recommendations