Advertisement

Journal of Solution Chemistry

, Volume 36, Issue 8, pp 997–1022 | Cite as

Some Thermodynamic Properties of the Binary Systems of Toluene with Butyl Methacrylate, Allyl Methacrylate, Methacrylic Acid and Vinyl Acetate at 20, 30 and 40 °C

  • Jaime Wisniak
  • Gladis Cortez
  • René D. Peralta
  • Ramiro Infante
  • Luis E. Elizalde
Original Paper

Abstract

Densities of the binary systems of toluene with butyl methacrylate, allyl methacrylate, methacrylic acid, and vinyl acetate have been measured as a function of composition at 20, 30 and 40 °C at atmospheric pressure, using an Anton Paar DMA 5000 oscillating U-tube densimeter. The excess molar volumes are negative for the system toluene + butyl methacrylate and positive for the three other binaries, and become more so as the temperature increases from 20 to 40 °C. The system toluene + allyl methacrylate presents near ideal behavior. The apparent volumes were used to calculate values of the partial excess molar volumes at infinite dilution. The excess coefficient of thermal expansion is positive for the four binary systems. The calculated excess molar volumes were correlated with the Redlich–Kister equation and with a series of Legendre polynomials. An explanation of the results is given based by the FT-IR (ATR) and 13C NMR spectra of equimolar mixtures of the different systems.

Keywords

Densities Excess molar volumes Apparent properties Monomers Toluene Methacrylates Vinyl acetate Densimeter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Peralta, R.D., Infante, R., Cortez, G., Villarreal, L., Wisniak, J.: Volumetric properties of cyclohexane with ethyl acrylate, butyl acrylate, methyl methacrylate, and styrene at 298.15 K. Thermochim. Acta 390, 47–53 (2002) Google Scholar
  2. 2.
    Peralta, R.D., Infante, R., Cortez, G., Torres-Lubián, J.R., Wisniak, J.: Volumetric properties of 1,2-dimethylbenzene + ethyl acrylate, butyl acrylate, methyl methacrylate, and styrene at 298.15 K. Thermochim. Acta 402, 247–252 (2003) Google Scholar
  3. 3.
    Peralta, R.D., Infante, R., Cortez, G., Cisneros, A., Wisniak, J.: Densities and excess volumes of benzene with ethyl acrylate, butyl acrylate, methyl methacrylate, and styrene at 298.15 K. Thermochim. Acta 398, 39–46 (2003) CrossRefGoogle Scholar
  4. 4.
    Peralta, R.D., Infante, R., Cortez, G., Rodríguez, O., Wisniak, J.: Volumetric properties of toluene with ethyl acrylate, butyl acrylate, methyl methacrylate, and styrene at 25 °C. J. Solution Chem. 31, 175–186 (2002) CrossRefGoogle Scholar
  5. 5.
    Peralta, R.D., Infante, R., Cortez, G., López, R.G., Wisniak, J.: Volumetric properties of 1,1-dimethylethyl methyl ether with ethyl acrylate, butyl acrylate, methyl methacrylate, and styrene at 298.15 K. Int. J. Thermophys. 24, 173–183 (2003) CrossRefGoogle Scholar
  6. 6.
    Peralta, R.D., Infante, R., Cortez, G., Ramírez, R.R., Wisniak, J.: Densities and excess volumes of binary mixtures of 1,4-dioxane with either ethyl acrylate, or styrene at T=298.15 K. J. Chem. Thermodyn. 35, 239–250 (2003) CrossRefGoogle Scholar
  7. 7.
    Peralta, R.D., Infante, R., Cortez, G., Ramos, L.F., Wisniak, J.: Excess molar volumes of tetrahydrofuran with ethyl acrylate, butyl acrylate, methyl methacrylate, and styrene at 298.15 K. Phys. Chem. Liq. 41, 361–369 (2003) CrossRefGoogle Scholar
  8. 8.
    MacKnight, W.J., McKenna, L.W., Read, B.E., Stein, R.S.: Properties of ethylene–methacrylic acid copolymers. J. Phys. Chem. 72, 1122–1126 (1968) CrossRefGoogle Scholar
  9. 9.
    Resa, J.M., Iglesias, M., González, C., Lanz, J., Mtz. de Ilarduya, J.A.: Excess volumes of binary mixtures of vinyl acetate and aromatic hydrocarbons. J. Chem. Thermodyn. 33, 723–732 (2001) CrossRefGoogle Scholar
  10. 10.
    Peralta, R.D., Infante, R., Cortez, G., Cadenas, G., Wisniak, J.: Densities, excess volumes, and partial molar volumes of m-xylene + ethyl acrylate, + butyl acrylate, + methyl methacrylate, and + styrene at 298.15 K. Int. J. Thermophys. 24, 1061–1071 (2003) CrossRefGoogle Scholar
  11. 11.
    Peralta, R.D., Infante, R., Cortez, G., Angulo, J.L., Wisniak, J.: Volumetric properties of ethylbenzene with ethyl acrylate, butyl acrylate, methyl methacrylate, and styrene at 298.15 K. Phys. Chem. Liq. 40, 649–660 (2003) CrossRefGoogle Scholar
  12. 12.
    Gong, H., Chen, W., Chou, Y., Chen, M., Zheng, G.: Excess volumes of the mixing of benzene and toluene with some polar solvents at 293.15 K. Wuli Huaxue Xuebao 1, 293–298 (1985) Google Scholar
  13. 13.
    George, J., Sastry, N.V., Prasad, D.H.L.: Excess molar enthalpies and excess molar volumes of methyl methacrylate + benzene, + toluene, + p-xylene, + cyclohexane and + aliphatic diethers (diethyl, diisopropyl and dibutyl). Fluid Phase Equilib. 214, 39–51 (2003) CrossRefGoogle Scholar
  14. 14.
    Wisniak, J., Sandoval, L.E., Peralta, R.D., Infante, R., Cortes, G., Elizalde, L.E., Soto, H.: Density and volumes of mixing of the ternary system ethylbenzene + styrene + ethyl acrylate and its binaries at 298.15 K. J. Solution Chem. 36, 135–152 (2007) CrossRefGoogle Scholar
  15. 15.
    Van Ness, H.C., Abbott, M.M.: Classical Thermodynamics of Nonelectrolyte Solutions. McGraw-Hill, New York (1982) Google Scholar
  16. 16.
    Glasstone, S.: Textbook of Physical Chemistry. Van Nostrand, New York (1946) Google Scholar
  17. 17.
    Redlich, O., Kister, A.T.: Thermodynamics of nonelectrolytic solutions. Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40, 345–348 (1948) CrossRefGoogle Scholar
  18. 18.
    Tomiska, J.: Zur Konversion der Anpassungen Thermodynamischer Funktionen Mittels einer Reihe Legendre’scher Polynome und der Potenzreihe. CALPHAD 5, 93–102 (1981) CrossRefGoogle Scholar
  19. 19.
    Tomiska, J.: Mathematical conversions of the thermodynamic excess functions represented by the Redlich–Kister expansion, and by the Chebyshev polynomial series to power series representations and vice-versa. CALPHAD 8, 283–294 (1984) CrossRefGoogle Scholar
  20. 20.
    Wisniak, J., Polishuk, A.: Analysis of residues—A useful tool for phase equilibrium data analysis. Fluid Phase Equilib. 164, 61–82 (1999) CrossRefGoogle Scholar
  21. 21.
    Shacham, M., Wisniak, J., Brauer, N.: Error analysis of linearization methods in regression of data for the van Laar and Margules equations. Ind. Eng. Chem. Res. 32, 2820–2825 (1993) CrossRefGoogle Scholar
  22. 22.
    TRC Thermodynamic Tables—Hydrocarbons. Thermodynamics Research Center, The Texas A&M University System, College Station, Texas, extant 2004; Table db-3220-0 (October 31, 2000) Google Scholar
  23. 23.
    DIPPR 801 Database, Properties for Industrial Process Design. Design Institute for Physical Properties (DIPPR), American Institute of Chemical Engineers, New York, extant 2006 Google Scholar
  24. 24.
    Yaws, C.: Chemical Properties Handbook. McGraw-Hill, New York (1999) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Jaime Wisniak
    • 1
  • Gladis Cortez
    • 2
  • René D. Peralta
    • 2
  • Ramiro Infante
    • 2
  • Luis E. Elizalde
    • 2
  1. 1.Department of Chemical EngineeringBen-Gurion University of the NegevBeer-ShevaIsrael
  2. 2.Centro de Investigación en Química AplicadaSaltilloMéxico

Personalised recommendations