Journal of Solution Chemistry

, Volume 36, Issue 7, pp 869–878 | Cite as

Solvent Effects on the Structure-Activity Relationship of Pharmacological Active 3-Substituted-5,5-Diphenylhydantoins

  • Nebojša Banjac
  • Gordana Ušćumlić
  • Nataša Valentić
  • Dušan Mijin
Original Paper


Absorption spectra of eight 3-substituted-5,5-diphenylhydantoins have been recorded in fourteen solvents in the range 200–400 nm. The effect of solvent dipolarity/polarizability and solvent/solute hydrogen bonding interactions are analyzed by means of the linear solvation energy relationship (LSER) concept proposed by Kamlet and Taft. The lipophilic activity of the investigated hydantoins was estimated by the calculation of log 10P values with the Advanced Chemistry Development Software. The calculated values of log 10P were correlated with the ratio of the contributions of specific solvent interactions, and, by employing the linear dependence thus obtained, the pharmacological activity of the studied hydantoin derivatives is discussed.


Hydantoins Absorption frequencies Solvent effect Kamlet–Taft equation Pharmacological activity Lipophilicity parameter Specific solvent interactions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lopez, A.C., Trigo, C.G.: In: Katrizky, A.R. (ed.) The Chemistry of Hydantoins. Advances in Heterocyclic Chemistry. Academic Press, New York (1985) Google Scholar
  2. 2.
    Scholl, S., Koch, A., Henning, D., Kempter, G., Kleinpeter, E.: The influence of structure and lipophilicity of hydantoin derivatives on anticonvulsant activity. Struct. Chem. 10, 355–366 (1999) CrossRefGoogle Scholar
  3. 3.
    Knabe, J., Baldauf, J., Ahlhem, A.: Racemates and enantiomers of basic substituted 5-phenylhydantoins. Syntheses and antiarrhythmic activity. Pharmazie 52, 912–919 (1997) Google Scholar
  4. 4.
    Anger, T., Madge, D.J., Mulla, M., Riddall, D.: Medicinal chemistry of neuronal voltage-gated sodium channel blockers. J. Med. Chem. 44, 115–137 (2001) PubMedCrossRefGoogle Scholar
  5. 5.
    Kleinpeter, E.: The structure of hydantoins in solution and in the solid state. Struct. Chem. 8, 161–173 (1997) CrossRefGoogle Scholar
  6. 6.
    Rodgers, T.R., LaMontagne, M.P., Markovac, A., Ach, A.B.: Hydantoins as antitumor agents. J. Med. Chem. 20, 591–594 (1977) PubMedCrossRefGoogle Scholar
  7. 7.
    Meldrum, B.S.: Identification and preclinical testing of novel antiepileptic compounds. Epilepsia 38, S7–S15 (1997) PubMedGoogle Scholar
  8. 8.
    Seydel, J.K., Schaper, K.J.: In: Schemische Struktur und Biologische Wirkung von Wirkstoffen, Metoden der Quantitativen Structur–Wirkungsanalyse. Verlag Chemie, Weinheim (1979) Google Scholar
  9. 9.
    Hacksell, U.: In: Krogsgaard-Larsen, P., Madsen, U. (eds.) A Textbook of Drug Design and Development. Harwood Academic Publishers, Amsterdam (1996) Google Scholar
  10. 10.
    Brouillette, W.J., Brown, G.B., DeLorey, T.M., Liang, G.: Sodium channel binding and anticonvulsant activities of hydantoin containing conformationally constrained 5-phenyl substituents. J. Pharm. Sci. 79, 871–874 (1990) PubMedCrossRefGoogle Scholar
  11. 11.
    Brouillette, W.J., Jestkov, V.P., Brown, M.L., Akhtar, M.S., DeLorey, T.M., Brown, G.B.: Bicyclic hydantoins with a bridgehead nitrogen. Comparison of anticonvulsant activities with binding to the neuronal voltage-dependent sodium channel. J. Med. Chem. 37, 3289–3293 (1994) Google Scholar
  12. 12.
    Unverferth, K., Engel, J., Höfgen, N., Rostock, A., Günther, R., Lankau, H.J., Menzer, M., Rolfs, A., Liebscher, J., Müller, B., Hofmann, H.J.: Synthesis. anticonvulsant activity, and structure-activity relationships of sodium channel blocking 3-aminopyrroles. J. Med. Chem. 41, 63–73 (1998) Google Scholar
  13. 13.
    Poupaert, J.H., Vandervarst, D., Guiot, P., Moustafa, M.M.M., Dumont, P.: Structure–activity relationship of phenytoin-like anticonvulsant drugs. J. Med. Chem. 27, 76–78 (1984) PubMedCrossRefGoogle Scholar
  14. 14.
    Jones, G.L., Woodbury, D.M.: Anticonvulsant structure–activity relationships: historical development and probable causes of failure. Drug Dev. Res. 2, 333–355 (1982) CrossRefGoogle Scholar
  15. 15.
    Kamlet, M.J., Abboud, J.L.M., Taft, R.W.: An examination of linear solvation energy relationships. Prog. Phys. Org. Chem. 13, 485–630 (1981) CrossRefGoogle Scholar
  16. 16.
    Abboud, J.L.M., Kamlet, M.J., Taft, R.W.: Regarding a generalized scale of solvent polarities. J. Am. Chem. Soc. 99, 8325–8327 (1977) CrossRefGoogle Scholar
  17. 17.
    Kamlet, M.J., Taft, R.W.: The solvatochromic comparison method. I. The β-scale of solvent hydrogen-bond acceptor (HBA) basicities. J. Am. Chem. Soc. 98, 377–383 (1976) CrossRefGoogle Scholar
  18. 18.
    Kamlet, M.J., Taft, R.W.: Linear solvation energy relationships. Part 3. Some reinterpretations of solvent effects based on correlations with solvent π * and α values. J. Chem. Soc. Perkin Trans. 2, 349–356 (1979) Google Scholar
  19. 19.
    Kamlet, M.J., Doherty, R.M., Abboud, J.L.M., Abraham, M.H., Taft, R.W.: Solubility: a new look. Chemtech 16, 566–576 (1986) Google Scholar
  20. 20.
    Carr, P.W., Doherty, R.M., Kamlet, M.J., Taft, R.W., Melander, W., Horvath, C.: Study of temperature and mobile-phase effects in reversed-phase high–performance liquid chromatography by the use of the solvatochromic comparison method. Anal. Chem. 58, 2674–2680 (1986) PubMedCrossRefGoogle Scholar
  21. 21.
    Ušćumlić, G.S., Mijin, D.Ž., Valentić, N.V., Vajs, V., Sušić, B.: Substituent and solvent effects on the UV/Vis absorption spectra of 5-(4-substituted arylazo)-6-hydroxy-4-methyl-3-cyano-2-pyridones. Chem. Phys. Lett. 397, 148–153 (2004) CrossRefGoogle Scholar
  22. 22.
    Mijin, D.Ž., Ušćumlić, G.S., Perišić-Janjić, N.U., Valentić, N.V.: Substituent and solvent effects on the UV/vis absorption spectra of 5-(3- and 4-substituted arylazo)-4,6-dimethyl-3-cyano-2-pyridones. Chem. Phys. Lett. 418, 223–229 (2006) CrossRefGoogle Scholar
  23. 23.
    Magnes, B.Z., Pines, D., Strashnikova, N., Pines, E.: Hydrogen-bonding interactions of photoacids: Correlation of optical solvatochromism with IR absorption spectra. Solid State Ionics 168, 225–233 (2004) CrossRefGoogle Scholar
  24. 24.
    Spange, S., Kunzmann, D., Sens, R., Roth, I., Seitfert, A., Thiel, W.R.: Solvatochromic azamethine dyes for probing the polarity of gold-cluster-functionalized silica particles. Chem. Eur. J. 9, 4161–4167 (2003) CrossRefGoogle Scholar
  25. 25.
    Vida, J.A., Samour, C.M., Reinhard, J.F.: Anticonvulsants. 1. Alkoxymethyl derivatives of barbiturates and diphenylhydantoin. J. Med. Chem. 14, 187–189 (1971) PubMedCrossRefGoogle Scholar
  26. 26.
    Mai, K.H.X., Patil, G.: Preparation of 2-(1-hydroxyalkyl)-5,5-diphenylhydantoins as drug intermediates. U.S. Patent 4,709,042 (1987); Chem. Abstr. 108, 94560 (1987) Google Scholar
  27. 27.
    Vida, J.A., Wilber, W.R., Reinhard, J.F.: Anticonvulsants. 2. Acyloxymethyl and halomethyl derivatives of barbituric acid and diphenylhydantoin. J. Med. Chem. 14, 190–193 (1971) CrossRefGoogle Scholar
  28. 28.
    Hoffmann, C.: Synthesis of some 3-substituted 5,5-diphenylhydantoins. Bull. Soc. Chim. Fr., 45–47 (1950) Google Scholar
  29. 29.
    Muccioli, G.G., Wouters, J., Poupaert, J.H., Norberg, B., Poppitz, W., Scriba, E.K.G., Lambert, D.M.: Versatile access to benzhydryl-phenylureas through an unexpected rearrangement during microwave-enhanced synthesis of hydantoins. Org. Lett. 5, 3599–3602 (2003) PubMedCrossRefGoogle Scholar
  30. 30.
    Kamlet, M.J., Abboud, J.L.M., Abraham, M.H., Taft, R.W.: Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, π *, α, and β, and some methods for simplifying the generalized solvatochromic equation. J. Org. Chem. 48, 2877–2887 (1983) CrossRefGoogle Scholar
  31. 31.
    Taft, R.W., Abboud, J.-L.M., Kamlet, M.J.: Solvatochromic comparison method. 20. Linear solvation energy relationships. 12. The dδ term in the solvatochromic equations. J. Am. Chem. Soc. 103, 1080–1086 (1981) CrossRefGoogle Scholar
  32. 32.
    Ušćumlić, G.S., Kshad, A.A., Mijin, D.Ž.: Synthesis and investigation of solvent effects on the ultraviolet absorption spectra of 1,3-bis-substituted-5,5-dimethylhydantoins. J. Serb. Chem. Soc. 68, 699–706 (2003) CrossRefGoogle Scholar
  33. 33.
    Ware, E.: The chemistry of the hydantoins. Chem. Rev. 46, 403–70 (1950) CrossRefGoogle Scholar
  34. 34.
    Vida, J.A., O’Dea, M.H., Samour, C.M., Reinhard, J.F.: Anticonvulsants. 5. Derivatives of 5-ethyl-5-phenylhydantoin and 5,5-diphenylhydantoin. J. Med. Chem. 18, 383–385 (1975) PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Nebojša Banjac
    • 1
  • Gordana Ušćumlić
    • 1
  • Nataša Valentić
    • 1
  • Dušan Mijin
    • 1
  1. 1.Department of Organic Chemistry, Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia

Personalised recommendations