Advertisement

Journal of Solution Chemistry

, Volume 36, Issue 5, pp 583–594 | Cite as

Liquid–Liquid Equilibria of Oxygenate Fuel Additives with Water: Two Quaternary Aqueous Systems of Diisopropyl Ether + 2,2,4-Trimethylpentane with Methyl tert-Butyl Ether or Toluene

  • Yao Chen
  • Shengli Zhang
Original Paper

Abstract

Experimental tie-line data for two quaternary systems, water + diisopropyl ether + 2,2,4-trimethylpentane + methyl tert-butyl ether or toluene, were investigated at 298.15 K and atmospheric pressure. The experimental liquid–liquid equilibrium data were correlated using a modified UNIQUAC activity coefficient model with ternary and quaternary parameters, in addition to the binary ones. The calculated results were further compared with those obtained with an extended UNIQUAC model from Nagata [Fluid Phase Equilib. 54, 191–206 (1990)].

Keywords

Ternary and quaternary liquid–liquid equilibria Oxygenate fuel additive Modified extended UNIQUAC models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dong, Y.H., Chen, Y., Pan, Z.J., Zhang, Y.M.: Ternary liquid–liquid equilibria for mixtures of water, diisopropyl ether and iso-octane at different temperatures. J. Jinan. Univ. Nat. Sci. Med. Ed. 27, 87–91 (2006) Google Scholar
  2. 2.
    Pan, Z.J., Chen, Y.: Ternary liquid–liquid equilibrium for mixtures of water, methyl tert-butyl ether and diisopropyl ether. Guangdong Chem. Ind. 1, 30–32 (2005) Google Scholar
  3. 3.
    Peschke, N., Sandler, S.I.: Liquid–liquid equilibria of fuel oxygenate + water + hydrocarbon mixtures. 1. J. Chem. Eng. Data 40, 315–320 (1995) CrossRefGoogle Scholar
  4. 4.
    Pan, Z.J., Chen, Y., Dong, Y.H., Li, R.Q., Tang, Y.: Ternary liquid–liquid equilibria for mixtures of water, diisopropyl ether and toluene. J. Jinan. Univ. Nat. Sci. Med. Ed. 25, 609–614 (2004) Google Scholar
  5. 5.
    Arce, A., Marchiaro, A., Rodríguez, O., Soto, A.: Liquid–liquid equilibrium of diisopropyl ether + ethanol + water system at different temperatures. J. Chem. Eng. Data 47, 529–532 (2002) CrossRefGoogle Scholar
  6. 6.
    Chen, Y., Dong, Y.H.: Liquid–liquid equilibria of oxygenate fuel additive with water at 298.15 K: ternary and quaternary aqueous systems of diisopropyl ether and hydrocarbons with 2-propanol. J. Solution Chem. 34, 1445–1457 (2005) CrossRefGoogle Scholar
  7. 7.
    Chen, Y., Dong, Y.H., Pan, Z.J.: Quaternary (liquid + liquid) equilibria for (water + 1,1-dimethylethyl methyl ether + diisopropyl ether + toluene) at the temperature 298.15 K. J. Chem. Thermodyn. 37, 1138–1143 (2005) CrossRefGoogle Scholar
  8. 8.
    Tamura, K., Chen, Y., Tada, K., Yamada, T., Nagata, I.: Representation of multicomponent liquid–liquid equilibria for aqueous and organic solutions using a modified UNIQUAC model. J. Solution Chem. 29, 463–488 (2000) CrossRefGoogle Scholar
  9. 9.
    Nagata, I.: Modification of the extended UNIQUAC model for correlating quaternary liquid–liquid equilibria data. Fluid Phase Equilib. 54, 191–206 (1990) CrossRefGoogle Scholar
  10. 10.
    Suresh Reddy, K.V.N., Prasad, D.H.L., Krishnaiah, A.: Phase equilibria for binary systems of octane boosters with 2,2,4-trimethylpentane. Fluid Phase Equilib. 230, 105–108 (2005) CrossRefGoogle Scholar
  11. 11.
    Wu, H.S., Pividal, K.A., Sandler, S.I.: Vapor-liquid equilibria of hydrocarbons and fuel oxygenates. J. Chem. Eng. Data 36, 418–421 (1991) CrossRefGoogle Scholar
  12. 12.
    Wisniak, J., Embon, G., Shafir, R.: Isobaric vapor–liquid equilibria in the systems methyl 1,1-dimethoxy-2-methylpropane and 2-methoxy-2-methylbutane at 101.32 kPa. J. Chem. Eng. Data 41, 718–723 (1996) CrossRefGoogle Scholar
  13. 13.
    Thorpe, P.L.: Isobaric vapor–liquid equilibria for binary mixtures of toluene + iso-octane system. Trans. Faraday Soc. 64, 2273–2280 (1968) CrossRefGoogle Scholar
  14. 14.
    Wisniak, J., Yardeni, B., Sling, T., Segura, H.: Isobaric vapor–liquid equilibria in the systems methyl acetate + 2,2′-oxybis[propane], 2,2′-oxybis[propane] + toluene, and methanol + 2-methyl-2-butanol. J. Chem. Eng. Data 46, 223–228 (2001) CrossRefGoogle Scholar
  15. 15.
    Arce, A., Blanco, M., Riveiro, R., Vidal, I.: Liquid–liquid equilibria of (MTBE or TAME) + ethanol + water mixtures. Can. J. Chem. Eng. 74, 419–422 (1996) CrossRefGoogle Scholar
  16. 16.
    Ruiz, F., Prats, D., Gomis, V.: Quaternary liquid–liquid equilibrium: water–ethanol–chloroform–toluene at 25 °C experimental determination and graphical and analytical correlation of equilibrium data. J. Chem. Eng. Data 30, 412–416 (1985) CrossRefGoogle Scholar
  17. 17.
    Sørensen, J.M., Arlt, W.: Liquid-liquid Equilibrium Data Collection, vol. V. DECHEMA, Frankfurt/Main (1979), Part 1 Google Scholar
  18. 18.
    Gmehling, J., Li, J., Schiller, M.A.: 1. Modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties. Ind. Eng. Chem. Res. 32, 178–193 (1993) CrossRefGoogle Scholar
  19. 19.
    Prausnitz, J.M., Anderson, T.F., Grens, E.A., Eckert, C.A., Hsieh, R., O’Connell, J.P.: Computer Calculations for Multicomponent Vapor–Liquid and Liquid–Liquid Equilibria. Prentice Hall, Englewood Cliffs (1980) Google Scholar
  20. 20.
    Riddick, J.A., Bunger, W.B., Sakano, T.K.: Organic Solvents, 4th edn. Wiley-Interscience, New York (1986) Google Scholar
  21. 21.
    Spencer, C.F., Danner, R.P.: Improved equation for prediction of saturated liquid density. J. Chem. Eng. Data 17, 236–241 (1972) CrossRefGoogle Scholar
  22. 22.
    Hayden, J.G., O’Connell, J.P.: A generalized method for predicting second virial coefficient. Ind. Eng. Chem. Process. Des. Dev. 14, 209–216 (1975) CrossRefGoogle Scholar
  23. 23.
    Nelder, J.A., Mead, R.: A simplex method for minimization. J. Comput. 7, 308–313 (1965) Google Scholar
  24. 24.
    Macedo, E.A., Rasmussen, P.: Liquid-Liquid Equilibrium Data Collection, vol. V. DECHEMA, Frankfurt am Main (1987), Part 4, Suppl. 1 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of ChemistryJinan UniversityGuangzhouPeople’s Republic of China

Personalised recommendations