Journal of Solution Chemistry

, Volume 35, Issue 2, pp 231–249 | Cite as

Interactions of Some Amino Acids with Aqueous Osmoprotectant Proline at 298.15 K: Volumetric and Calorimetric Studies

Article

Abstract

Apparent molar volumes of a homologous series of amino acids in aqueous proline solutions have been obtained from densities at 298.15 K, measured with a vibrating-tube digital densimeter. These data have been used to deduce the partial molar volumes of transfer from water to aqueous proline solutions; these partial molar volumes of transfer are found to be positive for glycine, alanine, α-amino-n-butyric acid and valine, whereas they are negative for leucine. The number of water molecules hydrated to the amino acids was estimated from the partial molar volume data. In order to supplement this information, enthalpies of transfer of aqueous amino acids from water to 0.1, 2.25 and 1 mol⋅dm−3 aqueous proline have been determined at 298.15 K using a VP-ITC titration calorimeter. The data on the partial molar volumes and enthalpies of transfer are discussed in terms of various interactions operating in the ternary mixtures of amino acids, water and proline.

Key Words

Amino acids partial molar volume densities isothermal titration calorimetry enthalpies of transfer proline 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. R. Russo, J. Rosgen, and D. W. Bolen., Osmolyte Effects on Kinetics of FKBP12 C22A Folding Coupled with Prolyl Isomerization, J. Mol. Biol. 330, 851–866 (2003).CrossRefGoogle Scholar
  2. 2.
    K. Shikari, M. Kudou, S. Fujiwara, T. Imanaka, and M. Takagi, Biophysical Effect of Amino Acids on the Prevention of Protein Aggregation, J. Biochem. (Tokyo) 132, 591–595 (2002).Google Scholar
  3. 3.
    L. C. Serpell, M. Sunde, and C. C. Blake, The Molecular Basis of Amyloidosis, Cell. Mol. Life Sci. 53, 871–887 (1997).CrossRefGoogle Scholar
  4. 4.
    P. H. Yancey, M. E. Clark, S. C. Hand, R. D. Bowlus, and G. N. Somero, Living with Water Stress: Evolution of Osmolyte Systems, Science 217, 1214–1222 (1982).Google Scholar
  5. 5.
    A. Wang, and D. W. Bolen, Effect of Proline on Lactate Dehydrogenase Activity: Testing Generality and Scope of the Compatibility Paradigm, Biophys. J. 71, 2117–2122 (1996).Google Scholar
  6. 6.
    D. W. Bolen and I. V. Baskakov, The Osmophobic Effect: Natural Selection of a Thermodynamic Force in Protein Folding, J. Mol. Biol. 310, 955–963 (2001).CrossRefGoogle Scholar
  7. 7.
    T. Arakawa, R. Bhat, and S. N. Timasheff, Preferential Interactions Determine Protein Solubility in Three-Component Solutions: The Magnesium Chloride System, Biochem. 29, 1914–1923 (1990).Google Scholar
  8. 8.
    S. N. Timasheff, The Control of Protein Stability and Association by Weak Interactions with Water: How do Solvents Affect these Processes?, Annu. Rev. Biophys. Biomol. Struct. 22, 67–97 (1993).CrossRefGoogle Scholar
  9. 9.
    T. Y. Lin and S. N. Timasheff, Why do Some Organisms Use a Urea-Methylamine Mixture as Osmolyte? Thermodynamic Compensation of Urea and Trimethylamine N-Oxide Interactions with Protein, Biochem. 33, 12695–12701 (1994).Google Scholar
  10. 10.
    D. W. Bolen, Effects of Naturally Occurring Osmolytes on Protein Stability and Solubility: Issues Important in Protein Crystallization, Methods 34, 312–322 (2004).CrossRefGoogle Scholar
  11. 11.
    S. N. Timasheff, Protein-Solvent Preferential Interactions, Protein Hydration, and the Modulation of Biochemical Reactions by Solvent Components, Proc. Natl. Acad. Sci. USA 99, 9721–9726 (2002).Google Scholar
  12. 12.
    T. Arakawa and S. N. Timasheff, The Stabilisation of Proteins by Osmolytes, Biophys. J. 47, 411–414 (1985).Google Scholar
  13. 13.
    J. C. Measures, Role of Amino Acids in Osmoregulation of Non-Halophilic Bacteria, Nature 257, 398–400 (1975).CrossRefGoogle Scholar
  14. 14.
    K. B. Schwab and D. F. Gaff, Influence of Compatible Solutes on Soluble Enzymes from Dessication-Tolerant Sporobolus stapfianus and Dessication-Sensitive Sporobolus Pyramidalis, J. Plant Phyiol. 1137, 208–215 (1990).Google Scholar
  15. 15.
    T. J. Flower, J. L. Hall, and M. E. Ward, Salt Tolerance in the Halophyte, Suaeda maritime (L.) Dum.: Properties of Malic Enzyme and PEP Carboxylase, Ann. Bot. 42, 1065–1074 (1978).Google Scholar
  16. 16.
    M. Meyer Hans and B. Segesser, Proline and 4-Hydroxyproline as Therapeutic Agents for Chronic Pain, Inflammation and Wounds, Eur. Patent Appl. (1996), 10 pp.Google Scholar
  17. 17.
    D. G. Archer, Thermodynamic Properties of the NaCl + H2O System. II. Thermodynamic Properties of NaCl(aq), NaCl·2H2O(cr), and Phase Equilibria, J. Phys. Chem. Ref. Data 21, 793–829 (1992).Google Scholar
  18. 18.
    J. E. Desnoyers, Structural Effects in Aqueous Solutions: A Thermodynamic Approach, Pure Appl. Chem. 54, 1469–1478 (1982).Google Scholar
  19. 19.
    G. R. Hedwig, J. F. Reading, and T. H. Lilley, Aqueous Solutions Containing Amino Acids and Peptides. 27. Partial Molar Heat capacities and Partial Molar Volumes of Some N-Acetyl Amino Acid Amides, some N-acetyl Peptide Amides and Two Peptides at 25 Degrees, C. J. Chem. Soc., Faraday Trans. 87, 1751–1758 (1991).Google Scholar
  20. 20.
    R. K. Wadi and R. K. Goyal, Densities, Viscosities and Application of Transition-State Theory for Water + Potassium Thiocyanate + Amino Acid Solutions at 288.15–308. 15 K, J. Solution Chem. 21, 163 (1992).CrossRefGoogle Scholar
  21. 21.
    Z. Yan, J. Wang, H. Zheng, and D. Liu, Volumetric Properties of α-Amino Acids in Aqueous Guanidine Hydrochloride at 5, 15, 25 and 35 °C, J. Solution Chem. 27, 473–483 (1998).CrossRefGoogle Scholar
  22. 22.
    J. Wang, Z. Yau, K. Zhuo, and J. Liu, Partial Molar Volumes of Some α-Amino Acids in Aqueous Sodium Acetate Solutions at 308.15 K, Biophys. Chem. 80, 179–188 (1999).Google Scholar
  23. 23.
    S. K. Singh, A. Kundu, and N. Kishore, Interactions of Some Amino Acids and Glycine Peptides with Aqueous Sodium Dodecyl Sulfate and Cetyltrimethylammonium Bromide at T = 298.15 K: A Volumetric Approach, J. Chem. Thermodyn. 36, 7–16 (2004).Google Scholar
  24. 24.
    A. W. Hakin, M. M. Duke, J. L. Marty, and K. E. Preuss, Some Thermodynamic Properties of Aqueous Amino Acid Systems at 288.15, 298.15, 313.15 and 328.15 K: Group Additivity Analyses of Standard-State Volumes and Heat Capacities, J. Chem. Soc., Faraday Trans. 90, 2027–2035 (1994).CrossRefGoogle Scholar
  25. 25.
    F. Franks, M. A. Quickenden, D. S. Reid, and B. Watson, Calorimetric and Volumetric Studies of Dilute Aqueous Solutions of Cyclic Ether Derivatives, Trans. Faraday Soc. 66, 582–589 (1970).CrossRefGoogle Scholar
  26. 26.
    F. J. Millero, A. L. Surdo, and C. Shin, The Apparent Molal Volumes and Adiabatic Compressibilities of Aqueous Amino Acids at 25 Degree C, J. Phys. Chem. 82, 784–792 (1978).CrossRefGoogle Scholar
  27. 27.
    E. Berlin and M. J. Pallansch, Densities of Several Proteins and L-Amino Acids in the Dry State, J. Phys. Chem. 72, 1887–1889 (1968).CrossRefGoogle Scholar
  28. 28.
    F. Shahidi, P. G. Farrell, and J. T. Edwards, Partial Molar Volumes of Organic Compounds in Water Carbohydrates, J. Solution Chem. 5, 807–816 (1976).CrossRefGoogle Scholar
  29. 29.
    S. Terasawa, H. Itsuki, and S. Arakawa, Contribution of Hydrogen Bonds to the Partial Molar Volumes of Nonionic Solutes in Water, J. Phys. Chem. 79, 2345–2351 (1975).CrossRefGoogle Scholar
  30. 30.
    A. Bondi, Van der Waals Volumes and Radii, J. Phys. Chem. 68, 441–451 (1964).Google Scholar
  31. 31.
    A. Bondi, Free Volumes and Free Rotation in Simple Liquids and Liquid Saturated Hydrocarbons, J. Phys. Chem. 58, 929–939 (1954).CrossRefGoogle Scholar
  32. 32.
    H. S. Frank and H. W. Evan, Free Volume and Entropy in Condensed Systems III. Entropy in Binary Liquid Mixtures; Partial Molal Entropy in Dilute Solutions; Structure and Thermodynamics in Aqueous Electrolytes, J. Chem. Phys. 13, 507–532 (1945).Google Scholar
  33. 33.
    D. Samuel, T. Krishnaswami, S. Kumar, G. Ganesh, G. Jayraman, P. W. Yang, M. M. Chang, V. D. Trivedi, S. L. Wang, K. C. Hwang, D. K. Chang, and Y. Chin, Proline Inhibits Aggregation During Protein Refolding, Protein Sci. 9, 344–352 (2000).Google Scholar
  34. 34.
    R. L. Kayushina and B. K. Vainshtein, Structural Determination of L-Proline by X- Ray Diffraction, Kristallographia 10, 834–844 (1983).Google Scholar
  35. 35.
    X. Wang, L. Xu, R. Lin, and D. Sun, Enthalpies of Dilution of Glycine and L-Alanine in Aqueous 1-Propanol Solutions at T = 298.15 K, J. Chem. Thermodyn. 37, 371–375 (2005).Google Scholar
  36. 36.
    B. Palecz, Thermochemical Properties of L-α-Amino Acids in Electrolyte-Water Mixtures, Fluid Phase Equil. 167, 253–261 (2000).CrossRefGoogle Scholar
  37. 37.
    D. W. James, R. F. Armishaw, and R. L. Foost, Structure of Aqueous Solutions. Librational Band Studies of Hydrophobic and Hydrophilic Effects in Solutions of Electrolytes and Nonelectrolytes, J. Phys. Chem. 80, 1346–1350 (1976).CrossRefGoogle Scholar
  38. 38.
    K. Hallenga, I. R. Grigera, and H. J. Berenelson, Influence of Hydrophobic Solutes on the Dynamic Behavior of Water, J. Phys. Chem. 84, 2381–2390 (1980).CrossRefGoogle Scholar
  39. 39.
    D. Hechte, F. Tadesse, and L. Walters, Correlating Hydration Shell Structure with Amino Acid Hydrophobicity, J. Am. Chem. Soc. 115, 3336–3337 (1993)Google Scholar
  40. 40.
    M. Ide, Y. Maeda, and H. Kitano, Effect of Hydrophobicity of Amino Acids on the Structure of Water, J. Phys. Chem. B 101, 7022–7026 (1997).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of ChemistryIndian Institute of TechnologyMumbaiIndia

Personalised recommendations