Journal of Solution Chemistry

, Volume 35, Issue 10, pp 1441–1451 | Cite as

Partial Molar Volumes of Some of α-Amino Acids in Binary Aqueous Solutions of MgSO4·7H2O at 298.15 K

Original Paper

Abstract

The apparent molar volume, V o φ, 2, of glycine, alanine, α-amino-n-butyric acid, valine and leucine have been determined in aqueous solutions of 0.25, 0.5 and 1.0 mol⋅dm−3 magnesium sulfate, and the partial specific volume from density measurements at 298.15 K. These data have been used to calculate the infinite dilution apparent molar volume, V o 2,m , group contribution of amino acids and partial molar volume of transfer, Δtr V 2,m o, from water to aqueous magnesium sulfate solutions. The linear correlation of V 2,m o for a homologous series of amino acids has been utilized to calculate the contributions of charged end groups (NH3 +, COO), CH2 - groups and other alkyl chains of amino acids to V 2,m o. The results for Δtr V 2,m o of amino acids from water to aqueous magnesium sulfate solutions have been interpreted in terms of ion-ion, ion-polar, hydrophilic-hydrophilic and hydrophobic-hydrophobic group interactions. The values of the standard partial molar volume of transfer for the amino acids with different hydrophobic contents, from water to aqueous MgSO4 are in general positive, indicating the predominance of the interactions of zwitterionic/hydrophilic groups of amino acids with ions of the salt. The hydration number decreases with increasing concentration of salt. The number of water molecules hydrated to amino acids decreases, further strengthening the predominance of ionic/hydrophilic interactions in this system.

Keywords

Partial molar volume Aqueous magnesium sulfate Hydration number Cosphere overlap Amino acids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kharakoz, D.P.: Volumetric properties of proteins and their analogues in diluted water solutions. 2. Partial adiabatic compressibility of amino acids at 15–70,°C. J. Phys. Chem. 95, 5634–5642 (1991)CrossRefGoogle Scholar
  2. 2.
    Kharakoz, D.P.: Volumetric properties of proteins and their analogs in diluted water solutions: 1. Partial volumes of amino acids at 15–55,°C. Biophys. Chem. 34, 115–125 (1989)CrossRefGoogle Scholar
  3. 3.
    Hedwig, G.R., Hoiland, H.: Thermodynamic properties of peptide solutions. 8. Isentropic pressure coefficients (∂ V2,Φ ∂ p)s of the apparent molar volumes V2,phi for each of the aqueous solutes: diglycine, triglycine, and tetraglycine. J. Chem. Thermodyn. 23, 1029–1035 (1991)CrossRefGoogle Scholar
  4. 4.
    Bhat, R., Ahulwalia, J.C.: Partial molar heat capacities and volumes of transfer of some amino acids and peptides from water to aqueous sodium chloride solutions at 298.15 K. J. Phys. Chem. 89, 1099–1105 (1985)CrossRefGoogle Scholar
  5. 5.
    Chalikian, T.V., Sarvazyan, A.P., Breslauer, K.J.: Partial molar volumes expansibilities, and compressibilities of α,ω-aminocarboxylic acids in aqueous solutions between 18 and 55,°C. J. Phys. Chem. 97, 13017–13025 (1993)CrossRefGoogle Scholar
  6. 6.
    Leyendekhers, J.V.: Solutions of organic solutes, 1. Volume and compressibility of amino acids. J. Phys. Chem. 90, 5449–5455 (1986)CrossRefGoogle Scholar
  7. 7.
    Makhatadze, G.I., Privalov, P.L.: Protein interactions with urea and guanidinium chloride: A calorimetric study. J. Mol. Biol. 226, 491–505 (1992)CrossRefGoogle Scholar
  8. 8.
    Kauzmann, W., Bodanszky, A., Rasper, J.: Volume changes in protein reactions. II. Comparison of ionization reactions in proteins and small molecules. J. Am. Chem. Soc. 84, 1777–1788 (1962)CrossRefGoogle Scholar
  9. 9.
    Kumar, A.: Alternate view on the thermal stability of the DNA duplex. Biochem. 34, 12921–12925 (1995)CrossRefGoogle Scholar
  10. 10.
    Wang J., Yan Z., Zhuo K., Lu J.: Partial molar volumes of some amino acids in aqueous sodium acetate solutions at 308.15 K. Biophys. Chem. 80, 179–188 (1999)CrossRefGoogle Scholar
  11. 11.
    Arakawa, T., Timasheff, S.N.: Mechanism of protein salting in and salting out by divalent cation salts: balance between hydration and salt binding. Biochem. 23, 5912–5923 (1984)CrossRefGoogle Scholar
  12. 12.
    Cabani, S., Conti, G., Matteoli, E., Tine, M.R.: Volumetric properties of amphionic molecules in water. Part 1. Volumetric changes in the formation of zwitterionic structures. J. Chem. Soc., Faraday Trans. 77, 2377–2384 (1981)CrossRefGoogle Scholar
  13. 13.
    Iqbal, M., Verrall, R.E.: Partial molar volumes and adiabatic compressibilities of glycyl peptides at 25,°C. J. Phys. Chem. 91, 967–971 (1987)CrossRefGoogle Scholar
  14. 14.
    Mishra, A.K., Ahulwalia, J.C.: Apparent molar volumes of amino acids, N-acetylamino acids and peptides in aqueous solutions. J. Phys. Chem. 88, 86–92 (1984)CrossRefGoogle Scholar
  15. 15.
    Collins, K.D.: Charge density-dependent strength of hydration and biological structure. Biophys. J. 72, 65–76 (1997)Google Scholar
  16. 16.
    Jones, F.E.: The air density equation and the transfer of the mass unit. J .Res. Natl. Bur. Stand (US) 83, 419–428 (1978)Google Scholar
  17. 17.
    Kishore, N., Marathe, R.: Volumetric properties and surface tension of aqueous 3-chloropropan-1-ol and aqueous 3-chloropropan-1,2-diol, and correlation to their effect on protein stability. J. Chem. Thermodyn. 32, 431–424 (2000)Google Scholar
  18. 18.
    Archer, D.G.: Thermodynamic properties of the NaCl+H2O system. II. Thermodynamic properties of NaCl(aq), NaClċ2H2O(cr), and Phase Equilibria. J. Phys. Chem. Ref. Data 21, 793–829 (1992)CrossRefGoogle Scholar
  19. 19.
    Singh, S.K., Kishore, N.: Partial molar volumes of transfer of some amino acids and peptides from water to 1 molċdm3 aqueous sodium acetate, sodium sulfate, and sodium thiocyanate at 25,°C, and correlation of the transfer parameters to the thermal stability of hen egg white lysozyme and α-lactalbumin in the presence of these salts. J. Solution Chem. 32, 117–125 (2003)CrossRefGoogle Scholar
  20. 20.
    Desnoyers, J.E.: Structural effects in aqueous solutions: a thermodynamic approach. Pure Appl. Chem. 54, 1469–1478 (1982)Google Scholar
  21. 21.
    Hedwig, G.R., Reading, J.F., Lilley, T.H.: Aqueous solutions containing amino acids and peptides. Part-27.- Partial molar heat capacities and partial molar volumes of some N-acetyl amino acids, some N-acetyl peptides amides and two peptides at 25,°C. J. Chem. Soc. Faraday Trans. 87, 1751–1758 (1991)CrossRefGoogle Scholar
  22. 22.
    Leslie, T.E., Lilley, T.H.: Aqueous solutions containing amino acids and peptides XX: volumetric behavior of some terminally substituted amino-acids and peptides at 298.15 K. Biopolymers 24, 695–710 (1985)CrossRefGoogle Scholar
  23. 23.
    Wadi, R.K., Goyal, R.K.: Temperature dependence of apparent molar volumes and viscosity B-coefficients of amino acids in aqueous potassium thiocyanate solutions from 15 to 35,°C. J. Solution Chem. 21, 163–170 (1992)CrossRefGoogle Scholar
  24. 24.
    Hakin, A.W., Duke, M.M., Marty, J.L., Pressure, K.E.: Some thermodynamic properties of aqueous amino acid systems at 288.15, 298.15, 313.15 and 328.15 K: Group additivity analysis of standard state volumes and heat capacities. J. Chem. Soc. Faraday Trans. 90, 2027–2035 (1994)CrossRefGoogle Scholar
  25. 25.
    Terasawa, S., Itsuki, H.: Arakawa, S.: Contribution of hydrogen bonding to the partial molar volumes of nonionic solutes in water. J. Phys. Chem. 72, 2345–2354 (1975)CrossRefGoogle Scholar
  26. 26.
    Millero, F.J., Surdo, A.L., Shin, C.: The apparent molal volumes and adiabatic compressibilities of aqueous amino acids at 25,°C. J. Phys. Chem. 82, 784–792 (1978)CrossRefGoogle Scholar
  27. 27.
    Berlin, E., Pallansch, M.J.: Densities of several proteins and L-amino acids in the dry state. J. Phys. Chem. 72, 1887–1892 (1968)CrossRefGoogle Scholar
  28. 28.
    Friedman, H.L., Krishnan, C.V.: Water—A Comprehensive Treatise. In: Franks, F. (ed.) Chap. 1, vol. 3, Plenum, New York (1973)Google Scholar
  29. 29.
    Gurney, R.W.: Ionic Process in Solution. McGraw Hill, New York (1953)Google Scholar
  30. 30.
    Franks, F., Quickenden, M.A., Reid, D.S., Watson, B.: Calorimetric and volumetric studies of diluted aqueous solutions of cyclic ether derivatives. Trans. Faraday Soc. 66, 582–589 (1970)CrossRefGoogle Scholar
  31. 31.
    Bondi, A.: van der Waals volumes and radii. J. Phys. Chem. 68, 441–451 (1964)Google Scholar
  32. 32.
    Bondi, A.: Free volumes and free rotation in simple liquids and liquid saturated hydrocarbons. J. Phys. Chem. 58, 929–939 (1954)CrossRefGoogle Scholar
  33. 33.
    Shahidi, F., Farrell, P.G., Edwards, J.T.: Apparent molar volumes and adiabatic compressibilities of some amino acids in aqueous sucrose solutions at 298.15 K. J. Solution Chem. 5, 807–815 (1976)CrossRefGoogle Scholar
  34. 34.
    Lark, B.S., Patyar, P., Banipal, T.S., Kishore, N.: Densities, partial molar volumes, and heat capacities of glycine, L-alanine, and L-leucine in aqueous magnesium chloride solutions at different temperatures. J Chem. Eng. Data 49, 553–565 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of ChemistryIndian Institute of Technology, BombayMumbaiIndia

Personalised recommendations