Journal of Solution Chemistry

, Volume 35, Issue 1, pp 95–111 | Cite as

Competition Between O2 and H2O2 in the Oxidation of Fe(II) in Natural Waters

  • Melchor González-Dávila
  • J. Magdalena Santana-Casiano
  • Frank J. Millero

The oxidation rates of nanomolar levels of Fe(II) in seawater (salinity S = 36.2) by mixtures of O2 and H2O2 has been measured as a function of pH (5.8–8.4) and temperature (3–35∘C). A competition exists for the oxidation of Fe(II) in the presence of both O2 (μ mol⋅L−1 levels) and H2O2 (nmol⋅L−1 levels). A kinetic model has been applied to explain the experimental results that considers the interactions of Fe(II) with the major ions in seawater. In the presence of both oxidants, the hydrolyzed Fe(II) species dominate the Fe(II) oxidation process between pH 6 and 8.5. Over pH range 6.2–7.9, the FeOH+ species are the most active, whereas above pH 7.9, the Fe(OH)02 species are the most active at the levels of CO2−3 concentration present in seawater. The predicted Fe(II) oxidation rate at [Fe(II)]0 = 30nmol⋅L−1 and pH = 8.17 in the oxygen-saturated seawater with [H2O2]0 = 50nmol⋅L−1 (log 10 k = −2.24s−1) is in excellent agreement with the experimental value of log 10 k = −2.29s−1 ([H2O2]0 = 55nmol⋅L−1, pH = 8).


Kinetics oxidation iron oxygen hydrogen peroxide model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. G. Pestane and R. G. Zika, Fate of Superoxide in Coastal Seawater, Nature 325, 516–518 (1987).Google Scholar
  2. 2.
    R. G. Zika, J. W. Moffett, R. G. Pestane, W. J. Cooper, and E. S. Saltzman, Spatial and Temporal Variations of Hydrogen Peroxide in Gulf of Mexico Waters, Geochim. Cosmochim. Acta 49, 1173–1184 (1985).CrossRefGoogle Scholar
  3. 3.
    C. A. Moore, C. T. Farmer, and R. G. Zika, Influence of the Orinoco River on Hydrogen Peroxide Distribution and Production in the Eastern Caribbean, J. Geophys. Res. 98, 2289–2298 (1993).Google Scholar
  4. 4.
    J. W. Moffett and R. G. Zika, Reaction Kinetics of Hydrogen Peroxide with Copper and Iron in Seawater, Environ. Sci. Technol. 21, 804–810 (1987).CrossRefGoogle Scholar
  5. 5.
    D. W. King, H. A. Lounsbury, and F. J. Millero, Rates and Mechanism of Fe(II) Oxidation at Nanomolar Total Iron Concentrations, Environ. Sci. Technol. 29, 818–824 (1995).CrossRefGoogle Scholar
  6. 6.
    J. M. Santana-Casiano, M. González-Dávila, and F. J. Millero, Oxidation of Nanomolar Levels of Iron(II) with Oxygen in Seawater, Environ. Sci. Technol. 39, 2073–2079 (2005).CrossRefGoogle Scholar
  7. 7.
    A. L. Rose and T. D. Waite, Kinetic Model for Fe(II) Oxidation in Seawater in the Absence and Presence of Natural Organic Matter, Environ. Sci. Technol. 36, 433–444 (2002).CrossRefGoogle Scholar
  8. 8.
    K. W. Bruland and E. L. Rue, Analytical Methods for the Determination of Concentrations and Speciation of Iron, in The Biogeochemistry of Iron in Seawater, D. R. Turner and K. A. Hunter, Eds. (Wiley, England, 2001), pp. 255–289.Google Scholar
  9. 9.
    K. H. Coale, K. S. Johnson, S. E. Fitzwater, S. P. G. Blain, T. P. Stanton, and T. L. Coley, IronEx-1, an In Situ Iron-enrichment Experiment: Experimental Design, Implementation and Results, Deep Sea Res. II 45, 919–945 (1998).CrossRefGoogle Scholar
  10. 10.
    P. L. Croot, P. Laan, J. Nishioka, V Strass, B. Cisewski, M. Boye, K. R. Timmermans, R. G. Bellerby, L. Goldson, P. Nightigale, and H. J. W de Baar, Spatial and Temporal Distribution of Fe(II) and H2O2 During EisenEX, an Open Ocean Mesoscale Iron Enrichment, Mar. Chem. 95, 65–88 (2005).CrossRefGoogle Scholar
  11. 11.
    M. González-Dávila, J. M. Santana-Casiano, and F. J. Millero, Oxidation of Nanomolar Levels of Iron(II) with H2O2 in Seawater, Geochim. Cosmochim. Acta 69, 83–93 (2005).Google Scholar
  12. 12.
    F. J. Millero, The pH of Estuarine Waters, Limnol. Oceanogr. 31, 839–847 (1986).Google Scholar
  13. 13.
    E. Viollier, P. W. Inglet, K. Hunter, A. N. Roychuodhury, and P. Capellen, The Ferrozine Method Revisited: Fe(II)(Fe(III) Determination in Natural Waters, App. Geochem. 15, 785–790 (2000).Google Scholar
  14. 14.
    J. Z. Zhang, C. Kelble, and F. J. Millero, Gas-segmented Continuous Flow Analysis of Iron in Water with a Long Liquid Waveguide Capillary Flow Cell, Anal. Chim. Acta. 438, 49–57 (2001).CrossRefGoogle Scholar
  15. 15.
    R. G. Zika and E. S. Saltzman, Interaction of Ozone and Hydrogen Peroxide in Water: Implication for Analysis of H2O2 in Air, Geophys. Res. Lett. 9, 231–234 (1982).Google Scholar
  16. 16.
    H. P. Hansen, Determination of Oxygen, in Methods of Seawater Analysis, K. Grasshoff, K. Kremling, and M. Ehrhardt, Eds. (Wiley-VCH, Germany, 1999), pp. 75–89, Chapter 4.Google Scholar
  17. 17.
    F. J. Millero, S. Sotolongo, and M. Izaguirre, The Kinetics of Oxidation of Fe(II) in Seawater, Geochim. Cosmochim. Acta 51, 793–801 (1987).Google Scholar
  18. 18.
    W. Stumm and G. F. Lee, Kinetic Product of Ferrous Iron, Ind. Eng. Chem. 53, 143–146 (1961).Google Scholar
  19. 19.
    F. J. Millero and S. Sotolongo, The Oxidation of Fe(II) with H2O2 in Seawater, Mar. Chem. 53, 1867–1873 (1989).Google Scholar
  20. 20.
    D. W. King and R. Farlow, Role of Carbonate Speciation on the Oxidation of Fe(II) by H2O2, Mar. Chem. 70, 201–209 (2000).CrossRefGoogle Scholar
  21. 21.
    J. M. Santana-Casiano, M. González-Dávila, and F. J. Millero, The Oxidation of Fe(II) in NaCl–HCO3 and Seawater Solutions in the Presence of Phthalate and Salicylate Ions: A Kinetic Model, Mar. Chem. 85, 27–40 (2004).CrossRefGoogle Scholar
  22. 22.
    D. W. King, Role of Carbonate Speciation on the Oxidation Rate of Fe(II) in Aquatic Systems, Environ. Sci. Technol. 32, 2997–3003 (1998).Google Scholar
  23. 23.
    J. D. Rush and B. H. J. Bielsky, Pulse Radiolytic Studies of the Reactions of HO2/O2 with Fe(II)/Fe(III) Ions. The Reactivity of HO2/O2 with Ferric Ions and its Implication on the Occurrence of the Haber–Weiss Reaction, J. Phys. Chem. 89, 5062–5066 (1985).Google Scholar
  24. 24.
    B. M. Voelker, D. L. Sedlak, and O. Zafiriou, Chemistry of Superoxide Radical in Seawater: Reaction with Organic Cu Complexes, Environ. Sci. Technol. 34, 1036–1042 (2000).CrossRefGoogle Scholar
  25. 25.
    T. L. Theis and P. C. Singer, Complexation of Fe(II) with Organic Matter and its Effect on Fe(II) Oxygenation, Environ. Sci. Technol. 8, 569–573 (1974).CrossRefGoogle Scholar
  26. 26.
    J. M. Santana-Casiano, M. González-Dávila, M. J. Rodríguez, and F. J. Millero, The Effects of Organic Compounds in the Oxidation Kinetics of Fe(II), Mar. Chem. 70, 211–222 (2000).CrossRefGoogle Scholar
  27. 27.
    B. M. Voelker and B. Sulzberger, Effects of Fulvic Acid on Fe(II) Oxidation by Hydrogen Peroxide, Environ. Sci. Technol. 30, 1106–1114 (1996).CrossRefGoogle Scholar
  28. 28.
    A. L. Rose and T. D. Waite, Effect of Dissolved Natural Organic Matter on the Kinetics of Ferrous Iron Oxygenation in Seawater, Environ. Sci. Technol. 37, 4877–4886 (2003). Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Melchor González-Dávila
    • 1
  • J. Magdalena Santana-Casiano
    • 1
  • Frank J. Millero
    • 2
  1. 1.Departamento de Química, Facultad de Ciencias del MarUniversidad de Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain
  2. 2.Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiami

Personalised recommendations