Journal of Solution Chemistry

, Volume 34, Issue 8, pp 947–960 | Cite as

Hydrohysteretic Phenomena of “Extremely Diluted Solutions” Induced by Mechanical Treatments: A Calorimetric and Conductometric Study at 25 C

  • V. Elia
  • M. Marchese
  • M. Montanino
  • E. Napoli
  • M. Niccoli
  • L. Nonatelli
  • A. Ramaglia
Article

Abstract

The purpose of this study was to obtain information about the influence of successive dilutions and succussions (violent shaking) on the structure of water. “Extremely diluted solutions” (EDS) are solutions obtained through the iteration of two processes: 1:100 dilution and succussion. Those two processes are repeated until extreme dilutions are reached, so that the chemical composition of the end solution is identical to that of the solvent. We measured the heats of mixing and the electrical conductivity of basic solutions of such EDS, and compared these results with the analogous heats of mixing and electrical conductivity of the untreated solvent. The measurements were carried out as a function of the age of the samples. We found some relevant exothermic excess heat of mixing, and higher electrical conductivity than those of the untreated solvent, also in function of time. The measurements show a good linear correlation between the two independent physico-chemical quantities, implying a single cause for this behavior of the extremely diluted solutions. The slopes of the linear correlation depend on the age of the EDS. Such a phenomenon could result from a variation of the shape of molecular aggregates that characterize the two different supramolecular structures of the water of different ages. This behavior could provide important support for understanding the nature of the phenomena described herein. A really intriguing phenomenon is the evolution of some physico-chemical properties with time. This hints at a “trigger” effect on the formation of molecular aggregates that result from the succussion procedure. We show that successive dilutions and succussions can permanently alter the physico-chemical properties of the aqueous solvent, the extent of which depends on the age of the samples.

Keywords

Calorimetry conductivity extremely diluted aqueous solutions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Wallqvist and R. D. Mountain, Rev. Comp. Chem. 13 183 (1999).Google Scholar
  2. 2.
    H. E. Stanley, S. V. Budyrev, M. Canpolat, M. Meyer, O. Mishima, M. R. Sadr-Lahijany, A. Scala, and F. W. Starr, Physica A 257 213 (1998).Google Scholar
  3. 3.
    H. E. Stanley, S. V. Budyrev, M. Canpolat, S. Havlin, O. Mishima, M. R. Sadr-Lahijany, A. Scala, and F. W. Starr, Physica D 133 453 (1999).Google Scholar
  4. 4.
    G. W. Robinson, C. Hee Cho, and G. I. Gellene, J. Phys. Chem. B 104 7179 (2000).CrossRefGoogle Scholar
  5. 5.
    S. Wourtersen, U. Emmerichs, H. K. Nienhuys, and H. J. Bakker, Phys. Rev. Lett. 81 11106 (1998).Google Scholar
  6. 6.
    O. Mishima and H. E. Stanley, Nature 396 329 (1998).CrossRefGoogle Scholar
  7. 7.
    S. Wourtersen, U. Emmerichs, and H. J. Bakker, Science 278 658 (1997).CrossRefGoogle Scholar
  8. 8.
    J. K. Gregory, D. C. Clary, K. Liu, G. Brown, and R. J. Saykally, Science 275 814 (1997).CrossRefPubMedGoogle Scholar
  9. 9.
    S. Woutersenand and H. J. Bakker, Nature 402 507 (1999).CrossRefGoogle Scholar
  10. 10.
    S. V. Shevkunov and A. Vegiri, J. Chem. Phys. 11 9303 (1999).CrossRefGoogle Scholar
  11. 11.
    J. Ropp, C. Lawrence, T. C. Farrar, and J. L. Skinner, J. Am. Chem. Soc. 121 8074 (2001)Google Scholar
  12. 12.
    C. H. Cho, S. Singh, and G. W. Robinson, Faraday Discuss. 103 19 (1996).CrossRefPubMedGoogle Scholar
  13. 13.
    V. I. Lobyshev, R. E. Shikhlinskaya, and B. D. Ryzhikov, J. Mol. Liq. 82 73 (1999).CrossRefGoogle Scholar
  14. 14.
    S. Samal and K. E. Geckeler, Chem. Commun. 2224 (2001).Google Scholar
  15. 15.
    L. Rey, Physica A 323 67 (2003).Google Scholar
  16. 16.
    V. Elia and M. Niccoli, Annals N. Y. Acad. Sci. 879 241 (1999).Google Scholar
  17. 17.
    V. Elia and M. Niccoli, J. Therm. Anal. Calor. 61 527 (2000).CrossRefGoogle Scholar
  18. 18.
    V. Elia and M. Niccoli, J. Therm. Anal. Calor. 75 815 (2004)CrossRefGoogle Scholar
  19. 19.
    V. Elia, E. Napoli, M. Niccoli, L. Nonatelli, A. Ramaglia, and E. Ventimiglia, J. Therm. Anal. Calor. 78 331 (2004).CrossRefGoogle Scholar
  20. 20.
    V. Elia, S. Baiano, I. Duro, E. Napoli, M. Niccoli, and L. Nonatelli, Homeopathy 93 144 (2004).CrossRefPubMedGoogle Scholar
  21. 21.
    S. Hahnemann, Organon of Medicine, 6th edn. (B. Jain Publishers, New Delhi, 1985).Google Scholar
  22. 22.
    G. Castronuovo, V. Elia, and F. Velleca, Curr. Top. Solution Chem. 2 125 (1997).Google Scholar
  23. 23.
    W. G. McMillan, Jr., and J. E. Mayer, J. Chem. Phys. 13 276 (1945).CrossRefGoogle Scholar
  24. 24.
    H. L. Friedman and C. V. Krishnan, J. Solution Chem. 2 119 (1973).CrossRefGoogle Scholar
  25. 25.
    F. Franks, M. D. Pedley, J. Chem. Soc. Faraday Trans. I 79 2249 (1983).CrossRefGoogle Scholar
  26. 26.
    J. J. Kozac, W. S. Knight, and W. Kauzmannn, J. Chem. Phys. 48 675 (1968)CrossRefGoogle Scholar
  27. 27.
    I. R. Tasker and R. H. Wood, J. Solution Chem. 11 469 (1982).CrossRefGoogle Scholar
  28. 28.
    C. Jolicoeur and G. Lacroix, Canad. J. Chem. 54 624 (1976).Google Scholar
  29. 29.
    M. Fujisawa, M. Maeda, S. Takagi, and T. Kimura, J. Therm. Anal. Calor 69 841 (2002).CrossRefGoogle Scholar
  30. 30.
    (a) K. S. Pitzer and J. M. Simonson, J. Phys. Chem. 90 3005 (1986); (b) K. S. Pitzer, In Activity Coefficients in Electrolyte Solutions (CRC Press, Boca Raton, 1991).Google Scholar
  31. 31.
    T. S. Light and S. L. Licht, Analy. Chem. 59 2327 (1987).CrossRefGoogle Scholar
  32. 32.
    G. Barone, G. Castronuovo, V. Crescenzi, V. Elia, and E. Rizzo, J. Solution Chem. 3 197 (1978).Google Scholar
  33. 33.
    C. J. T. de Grotthus, Ann. Chim. LVIII 54 (1806).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • V. Elia
    • 1
  • M. Marchese
    • 1
  • M. Montanino
    • 1
  • E. Napoli
    • 1
  • M. Niccoli
    • 1
  • L. Nonatelli
    • 1
  • A. Ramaglia
    • 2
  1. 1.Department of ChemistryUniversity “Federico II” of NaplesNaplesItaly
  2. 2.Department of PhysicsUniversity “Federico II” of NaplesNaplesItaly

Personalised recommendations