Advertisement

Branch-cut-and-price for scheduling deliveries with time windows in a direct shipping network

  • Timo GschwindEmail author
  • Stefan Irnich
  • Christian Tilk
  • Simon Emde
Article
  • 47 Downloads

Abstract

In a direct shipping (or point-to-point) network, individual deliveries are round trips from one supplier to one customer and back to either the same or another supplier, i.e., a truck can visit only one customer at a time before it has to return to a supplier. We consider the multiple sources/multiple sinks case, where a given set of direct deliveries from a set of suppliers to a set of customers must be scheduled such that the customer time windows are not violated, the truck fleet size is minimal, and the total weighted flow time is as small as possible. Direct shipping policies are commonly employed in just-in-time logistics (e.g., in the automotive industry) and in humanitarian logistics. We present an exact branch-cut-and-price algorithm for this problem, which is shown to perform well on instances from the literature and newly generated ones. We also investigate under what circumstances bundling suppliers in so-called supplier parks actually facilitates logistics operations under a direct shipping policy.

Keywords

Direct deliveries Branch-cut-and-price Weighted flow time Just-in-time logistics 

Notes

Supplementary material

10951_2019_620_MOESM1_ESM.pdf (60 kb)
Supplementary material 1 (pdf 59 KB)

References

  1. Achterberg, T. (2007). Constraint integer programming. Ph.D. thesis, Technische Universität Berlin, Fakultät II—Mathematik und Naturwissenschaften, Berlin, Germany.Google Scholar
  2. Afzalirad, M., & Rezaeian, J. (2016). Resource-constrained unrelated parallel machine scheduling problem with sequence dependent setup times, precedence constraints and machine eligibility restrictions. Computers & Industrial Engineering, 98, 40–52.CrossRefGoogle Scholar
  3. Allahverdi, A. (2015). The third comprehensive survey on scheduling problems with setup times/costs. European Journal of Operational Research, 246(2), 345–378.CrossRefGoogle Scholar
  4. Allahverdi, A., Ng, C., Cheng, T. E., & Kovalyov, M. Y. (2008). A survey of scheduling problems with setup times or costs. European Journal of Operational Research, 187(3), 985–1032.CrossRefGoogle Scholar
  5. Angel-Bello, F., Cardona-Valdes, Y., & Alvarez, A. (2019). Mixed integer formulations for the multiple minimum latency problem. Operational Research, 19(2), 369–398.  https://doi.org/10.1007/s12351-017-0299-4.CrossRefGoogle Scholar
  6. Baldacci, R., Mingozzi, A., & Roberti, R. (2011). New route relaxation and pricing strategies for the vehicle routing problem. Operations Research, 59(5), 1269–1283.CrossRefGoogle Scholar
  7. Barnes-Schuster, D., & Bassok, Y. (1997). Direct shipping and the dynamic single-depot/multi-retailer inventory system. European Journal of Operational Research, 101(3), 509–518.CrossRefGoogle Scholar
  8. Boysen, N., Emde, S., Hoeck, M., & Kauderer, M. (2015). Part logistics in the automotive industry: Decision problems, literature review and research agenda. European Journal of Operational Research, 242(1), 107–120.CrossRefGoogle Scholar
  9. Bulhoes, T., Sadykov, R., & Uchoa, E. (2018). A branch-and-price algorithm for the minimum latency problem. Computers & Operations Research, 93(1), 66–78.CrossRefGoogle Scholar
  10. Carpaneto, G., Dell’Amico, M., Fischetti, M., & Toth, P. (1989). A branch and bound algorithm for the multiple depot vehicle scheduling problem. Networks, 19(5), 531–548.CrossRefGoogle Scholar
  11. Chen, L. (2008). Product & customer profiling for direct store delivery (DSD). Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA.Google Scholar
  12. Chen, Z.-L., & Powell, W. B. (1999). Solving parallel machine scheduling problems by column generation. INFORMS Journal on Computing, 11(1), 78–94.CrossRefGoogle Scholar
  13. Chopra, S. (2003). Designing the distribution network in a supply chain. Transportation Research Part E: Logistics and Transportation Review, 39(2), 123–140.CrossRefGoogle Scholar
  14. Chopra, S., & Meindl, P. (2015). Supply chain management: Strategy, planning, and operation (6th ed.). Upper Saddle River, NJ: Prentice Hall.Google Scholar
  15. Chuah, K. H., & Yingling, J. C. (2005). Routing for a just-in-time supply pickup and delivery system. Transportation Science, 39(3), 328–339.CrossRefGoogle Scholar
  16. De Angelis, V., Mecoli, M., Nikoi, C., & Storchi, G. (2007). Multiperiod integrated routing and scheduling of world food programme cargo planes in Angola. Computers & Operations Research, 34(6), 1601–1615.CrossRefGoogle Scholar
  17. Dell’Amico, M., Fischetti, M., & Toth, P. (1993). Heuristic algorithms for the multiple depot vehicle scheduling problem. Management Science, 39(1), 115–125.CrossRefGoogle Scholar
  18. Desaulniers, G., Desrosiers, J., Ioachim, I., Solomon, M., Soumis, F., & Villeneuve, D. (1998). A unified framework for deterministic time constrained vehicle routing and crew scheduling problems. In T. Crainic & G. Laporte (Eds.), Fleet management and logistics, chapter 3 (pp. 57–93). Boston: Kluwer Academic Publisher.CrossRefGoogle Scholar
  19. Desaulniers, G., Desrosiers, J., & Solomon, M. (Eds.). (2005). Column generation. New York, NY: Springer.Google Scholar
  20. Desaulniers, G., Madsen, O., & Ropke, S. (2014). The vehicle routing problem with time windows. In D. Vigo & P. Toth (Eds.), Vehicle routing, chapter 5 (pp. 119–159). Philadelphia, PA: Society for Industrial and Applied Mathematics.CrossRefGoogle Scholar
  21. Du, T., Wang, F., & Lu, P.-Y. (2007). A real-time vehicle-dispatching system for consolidating milk runs. Transportation Research Part E: Logistics and Transportation Review, 43(5), 565–577.CrossRefGoogle Scholar
  22. Emde, S., & Zehtabian, S. (2019). Scheduling direct deliveries with time windows to minimize truck fleet size and customer waiting times. International Journal of Production Research, 57(5), 1315–1330.CrossRefGoogle Scholar
  23. Fakcharoenphol, J., Harrelson, C., & Rao, S. (2007). The \(k\)-traveling repairmen problem. ACM Transactions on Algorithms (TALG), 3(4), 40.CrossRefGoogle Scholar
  24. Gacias, B., Artigues, C., & Lopez, P. (2010). Parallel machine scheduling with precedence constraints and setup times. Computers & Operations Research, 37(12), 2141–2151.CrossRefGoogle Scholar
  25. Gallego, G., & Simchi-Levi, D. (1990). On the effectiveness of direct shipping strategy for the one-warehouse multi-retailer r-systems. Management Science, 36(2), 240–243.CrossRefGoogle Scholar
  26. Gaur, D. R., & Singh, R. R. (2017). A heuristic for cumulative vehicle routing using column generation. Discrete Applied Mathematics, 228, 140–157.CrossRefGoogle Scholar
  27. Gélinas, S., Desrochers, M., Desrosiers, J., & Solomon, M. (1995). A new branching strategy for time constrained routing problems with applications to backhauling. Annals of Operations Research, 61, 91–109.CrossRefGoogle Scholar
  28. Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. R. (1979). Optimization and approximation in deterministic sequencing and scheduling: A survey. Annals of discrete mathematics (Vol. 5, pp. 287–326). Amsterdam: Elsevier.Google Scholar
  29. Hamzadayi, A., & Yildiz, G. (2017). Modeling and solving static m identical parallel machines scheduling problem with a common server and sequence dependent setup times. Computers & Industrial Engineering, 106, 287–298.CrossRefGoogle Scholar
  30. Ioachim, I., Gélinas, S., Desrosiers, J., & Soumis, F. (1998). A dynamic programming algorithm for the shortest path problem with time windows and linear node costs. Networks, 31, 193–204.CrossRefGoogle Scholar
  31. Irnich, S. (2008). Resource extension functions: Properties, inversion, and generalization to segments. OR Spectrum, 30(1), 113–148.CrossRefGoogle Scholar
  32. Irnich, S., & Desaulniers, G. (2005). Shortest path problems with resource constraints. In G. Desaulniers, J. Desrosiers, & M. Solomon (Eds.), Column generation, chapter 2 (pp. 33–65). Berlin: Springer.CrossRefGoogle Scholar
  33. Jepsen, M., Petersen, B., Spoorendonk, S., & Pisinger, D. (2008). Subset-row inequalities applied to the vehicle-routing problem with time windows. Operations Research, 56(2), 497–511.CrossRefGoogle Scholar
  34. Ke, L., & Feng, Z. (2013). A two-phase metaheuristic for the cumulative capacitated vehicle routing problem. Computers & Operations Research, 40(2), 633–638.CrossRefGoogle Scholar
  35. Klug, F. (2018). Logistikmanagement in der Automobilindustrie: Grundlagen der Logistik im Automobilbau. Heidelberg: Springer.  https://doi.org/10.1007/978-3-662-55873-7.CrossRefGoogle Scholar
  36. Knott, R. (1987). The logistics of bulk relief supplies. Disasters, 11(2), 113–115.CrossRefGoogle Scholar
  37. Kohl, N., Desrosiers, J., Madsen, O., Solomon, M., & Soumis, F. (1999). \(2\)-path cuts for the vehicle routing problem with time windows. Transportation Science, 33(1), 101–116.CrossRefGoogle Scholar
  38. Kulkarni, S., Krishnamoorthy, M., Ranade, A., Ernst, A. T., & Patil, R. (2018). A new formulation and a column generation-based heuristic for the multiple depot vehicle scheduling problem. Transportation Research Part B: Methodological, 118, 457–487.CrossRefGoogle Scholar
  39. Lalla-Ruiz, E., & Voß, S. (2019). A popmusic approach for the multi-depot cumulative capacitated vehicle routing problem. Optimization Letters, 1–21.Google Scholar
  40. Larsson, A. (2002). The development and regional significance of the automotive industry: Supplier parks in Western Europe. International Journal of Urban and Regional Research, 26(4), 767–784.CrossRefGoogle Scholar
  41. Lenstra, J. K., Kan, A. R., & Brucker, P. (1977). Complexity of machine scheduling problems. In Annals of discrete mathematics (Vol. 1, pp. 343–362). Elsevier.Google Scholar
  42. Lopes, M. J. P., & Valério de Carvalho, J. M. (2007). A branch-and-price algorithm for scheduling parallel machines with sequence dependent setup times. European Journal of Operational Research, 176(3), 1508–1527.CrossRefGoogle Scholar
  43. Luo, Z., Qin, H., & Lim, A. (2014). Branch-and-price-and-cut for the multiple traveling repairman problem with distance constraints. European Journal of Operational Research, 234(1), 49–60.CrossRefGoogle Scholar
  44. Lysgaard, J., & Wøhlk, S. (2014). A branch-and-cut-and-price algorithm for the cumulative capacitated vehicle routing problem. European Journal of Operational Research, 236(3), 800–810.CrossRefGoogle Scholar
  45. Meyer, A., & Amberg, B. (2018). Transport concept selection considering supplier milk runs-an integrated model and a case study from the automotive industry. Transportation Research Part E: Logistics and Transportation Review, 113, 147–169.CrossRefGoogle Scholar
  46. Nucamendi-Guillén, S., Martínez-Salazar, I., Angel-Bello, F., & Moreno-Vega, J. M. (2016). A mixed integer formulation and an efficient metaheuristic procedure for the \(k\)-travelling repairmen problem. Journal of the Operational Research Society, 67(8), 1121–1134.CrossRefGoogle Scholar
  47. Park, J., & Kim, B.-I. (2010). The school bus routing problem: A review. European Journal of Operational Research, 202(2), 311–319.CrossRefGoogle Scholar
  48. Pessoa, A., Uchoa, E., de Aragão, M. P., & Rodrigues, R. (2010). Exact algorithm over an arc-time-indexed formulation for parallel machine scheduling problems. Mathematical Programming Computation, 2(3–4), 259–290.CrossRefGoogle Scholar
  49. Pfohl, H.-C., & Gareis, K. (2005). Supplier parks in the German automotive industry: A critical comparison with similar concepts. International Journal of Physical Distribution & Logistics Management, 35(5), 302–317.CrossRefGoogle Scholar
  50. Pinedo, M. L. (2016). Scheduling: Theory, algorithms, and systems. Berlin: Springer.CrossRefGoogle Scholar
  51. Rauch, P., Gronalt, M., & Häuslmayer, H. (2007). Überregionales Logistik- und Versorgungsnetzwerk für Holz-Biomasse. Schriftenreihe Berichte aus Energie- und Umweltforschung, 51.Google Scholar
  52. Ribeiro, C. C., & Soumis, F. (1994). A column generation approach to the multiple-depot vehicle scheduling problem. Operations Research, 42(1), 41–52.CrossRefGoogle Scholar
  53. Ribeiro, G. M., & Laporte, G. (2012). An adaptive large neighborhood search heuristic for the cumulative capacitated vehicle routing problem. Computers & Operations Research, 39(3), 728–735.CrossRefGoogle Scholar
  54. Righini, G., & Salani, M. (2006). Symmetry helps: Bounded bi-directional dynamic programming for the elementary shortest path problem with resource constraints. Discrete Optimization, 3(3), 255–273.CrossRefGoogle Scholar
  55. Rivera, J. C., Afsar, H. M., & Prins, C. (2016). Mathematical formulations and exact algorithm for the multitrip cumulative capacitated single-vehicle routing problem. European Journal of Operational Research, 249(1), 93–104.CrossRefGoogle Scholar
  56. Sze, J. F., Salhi, S., & Wassan, N. (2017). The cumulative capacitated vehicle routing problem with min-sum and min-max objectives: An effective hybridisation of adaptive variable neighbourhood search and large neighbourhood search. Transportation Research Part B: Methodological, 101, 162–184.CrossRefGoogle Scholar
  57. Tanaka, S., & Araki, M. (2013). An exact algorithm for the single-machine total weighted tardiness problem with sequence-dependent setup times. Computers & Operations Research, 40(1), 344–352.CrossRefGoogle Scholar
  58. Tilk, C., Rothenbächer, A.-K., Gschwind, T., & Irnich, S. (2017). Asymmetry matters: Dynamic half-way points in bidirectional labeling for solving shortest path problems with resource constraints faster. European Journal of Operational Research, 261(2), 530–539.CrossRefGoogle Scholar
  59. Tilk, C., Bianchessi, N., Drexl, M., Irnich, S., & Meisel, F. (2018). Branch-and-price-and-cut for the active-passive vehicle-routing problem. Transportation Science, 52, 300–319.CrossRefGoogle Scholar
  60. van Den Akker, J. M., Hoogeveen, J. A., & van de Velde, S. L. (1999). Parallel machine scheduling by column generation. Operations Research, 47(6), 862–872.CrossRefGoogle Scholar
  61. Vigo, D., & Toth, P. (Eds.). (2014). Vehicle routing. Philadelphia, PA: MOS-SIAM Series on Optimization. Society for Industrial and Applied Mathematics.Google Scholar
  62. Yu, G., & Zhang, G. (2009). Scheduling with a minimum number of machines. Operations Research Letters, 37(2), 97–101.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chair of Logistics Management, Gutenberg School of Management and EconomicsJohannes Gutenberg University MainzMainzGermany
  2. 2.Fachgebiet Management Science/Operations ResearchTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations