A survey on makespan minimization in semi-online environments

Invited Survey Paper
  • 9 Downloads

Abstract

We discuss variants of online scheduling on identical and uniformly related machines, where the objective is to minimize the makespan. All variants are such that some information regarding the input is provided in advance, and therefore these models are known as semi-online problems. Algorithms are analyzed with respect to the competitive ratio. We discuss the benefit arising from different kinds of available information and find that almost all variants allow one to reduce the competitive ratio significantly compared to the best possible competitive ratio for the corresponding pure online problem.

Keywords

Competitive ratio Semi-online algorithms Bin stretching Reassignment Known total size Reordering buffers 

References

  1. Albers, S. (2002) On randomized online scheduling. In Proceedings of the on 34th annual ACM symposium on theory of computing (STOC2002) (pp. 134–143).Google Scholar
  2. Albers, S. (2013). Recent advances for a classical scheduling problem. In Proceedings of the 40th international colloquium on automata, languages, and programming, (ICALP2013), part II (pp. 4–14).Google Scholar
  3. Albers, S. (1999). Better bounds for online scheduling. SIAM Journal on Computing, 29(2), 459–473.Google Scholar
  4. Albers, S., & Hellwig, M. (2012). Semi-online scheduling revisited. Theoretical Computer Science, 443, 1–9.Google Scholar
  5. Albers, S., & Hellwig, M. (2017a). On the value of job migration in online makespan minimization. Algorithmica, 79(2), 598–623.Google Scholar
  6. Albers, S., & Hellwig, M. (2017b). Online makespan minimization with parallel schedules. Algorithmica, 78(2), 492–520.Google Scholar
  7. Andrews, M., Goemans, M. X., & Zhang, L. (1999). Improved bounds for on-line load balancing. Algorithmica, 23(4), 278–301.Google Scholar
  8. Angelelli, E. (2000). Semi on-line scheduling on two parallel processors with known sum and lower bound on the size of the tasks. Central European Journal of Operations Research, 8(4), 285–295.Google Scholar
  9. Angelelli, E., Nagy, Á. B., Speranza, M. G., & Tuza, Z. (2004). The on-line multiprocessor scheduling problem with known sum of the tasks. Journal of Scheduling, 7(6), 421–428.Google Scholar
  10. Angelelli, E., Nagy, Á. B., Speranza, M. G., & Tuza, Z. (2007). Semi on-line scheduling on three processors with known sum of the tasks. Journal of Scheduling, 10(4), 263–269.Google Scholar
  11. Angelelli, E., Speranza, M. G., & Tuza, Z. (2003). Semi-on-line scheduling on two parallel processors with an upper bound on the items. Algorithmica, 37(4), 243–262.Google Scholar
  12. Angelelli, E., Speranza, M. G., & Tuza, Z. (2006). New bounds and algorithms for on-line scheduling: Two identical processors, known sum and upper bound on the tasks. Discrete Mathematics and Theoretical Computer Science, 8(1), 1–16.Google Scholar
  13. Angelelli, E., Speranza, M. G., & Tuza, Z. (2008). Semi-online scheduling on two uniform processors. Theoretical Computer Science, 393(1–3), 211–219.Google Scholar
  14. Aspnes, J., Azar, Y., Fiat, A., Plotkin, S. A., & Waarts, O. (1997). On-line routing of virtual circuits with applications to load balancing and machine scheduling. Journal of the ACM, 44(3), 486–504.Google Scholar
  15. Azar, Y., & Regev, O. (2001). On-line bin-stretching. Theoretical Computer Science, 268(1), 17–41.Google Scholar
  16. Baram, G., & Tamir, T. (2014). Reoptimization of the minimum total flow-time scheduling problem. Sustainable Computing: Informatics and Systems, 4(4), 241–251.Google Scholar
  17. Bar-Noy, A., Freund, A., & Naor, J. (2000). New algorithms for related machines with temporary jobs. Journal of Scheduling, 3(5), 259–272.Google Scholar
  18. Bartal, Y., Fiat, A., Karloff, H. J., & Vohra, R. (1995). New algorithms for an ancient scheduling problem. Journal of Computer and System Sciences, 51(3), 359–366.Google Scholar
  19. Bartal, Y., Karloff, H. J., & Rabani, Y. (1994). A better lower bound for on-line scheduling. Information Processing Letters, 50(3), 113–116.Google Scholar
  20. Berman, P., Charikar, M., & Karpinski, M. (2000). On-line load balancing for related machines. Journal of Algorithms, 35(1), 108–121.Google Scholar
  21. Böhm, M., Sgall, J., van Stee, R., & Veselý, P. (2017a). Online bin stretching with three bins. Journal of Scheduling, 20(6), 601–621.Google Scholar
  22. Böhm, M., Sgall, J., van Stee, R., & Veselý, P. (2017b). A two-phase algorithm for bin stretching with stretching factor 1.5. Journal of Combinaorial. Optimization, 34(3), 810–828.Google Scholar
  23. Boyar, J., Favrholdt, L. M., Kudahl, C., & Mikkelsen, J. W. (2016). Weighted online problems with advice. In Proceedings of the 27th international workshop on combinatorial algorithms (IWOCA2016) (pp. 179–190).Google Scholar
  24. Cai, S.-Y., & Yang, Q.-F. (2011). Semi-online scheduling on two uniform machines with the known largest size. Journal of Combinatorial Optimization, 21(4), 393–408.Google Scholar
  25. Cao, Q., Cheng, T., Wan, G., & Li, Y. (2012). Several semi-online scheduling problems on two identical machines with combined information. Theoretical Computer Science, 457, 35–44.Google Scholar
  26. Cao, Q., & Liu, Z. (2010a). Online scheduling with reassignment on two uniform machines. Theoretical Computer Science, 411(31–33), 2890–2898.Google Scholar
  27. Cao, Q., & Liu, Z. (2010b). Semi-online scheduling with known maximum job size on two uniform machines. Journal of Combinatorial Optimization, 20(4), 369–384.Google Scholar
  28. Cao, Q., & Liu, Z. (2016). Semi-online scheduling with bounded job sizes on two uniform machines. Theoretical Computer Science, 652, 1–17.Google Scholar
  29. Cao, Q., Liu, Z., & Cheng, T. C. E. (2011). Semi-online scheduling with known partial information about job sizes on two identical machines. Theoretical Computer Science, 412(29), 3731–3737.Google Scholar
  30. Cao, Q., & Wan, G. (2016). Semi-online scheduling with combined information on two identical machines in parallel. Journal of Combinatorial Optimization, 31(2), 686–695.Google Scholar
  31. Chandrasekaran, R., Chen, B., Galambos, G., Narayanan, P. R., & van Vliet, A. (1997). A note on “an on-line scheduling heuristic with better worst case ratio than Graham’s list scheduling”. SIAM Journal on Computing, 26(3), 870–872.Google Scholar
  32. Cheng, T. C. E., Kellerer, H., & Kotov, V. (2005). Semi-on-line multiprocessor scheduling with given total processing time. Theoretical Computer Science, 337(1–3), 134–146.Google Scholar
  33. Cheng, T. C. E., Kellerer, H., & Kotov, V. (2012). Algorithms better than LPT for semi-online scheduling with decreasing processing times. Operations Research Letters, 40(5), 349–352.Google Scholar
  34. Cheng, T. C. E., Ng, C. T., & Kotov, V. (2006). A new algorithm for online uniform-machine scheduling to minimize the makespan. Information Processing Letters, 99(3), 102–105.Google Scholar
  35. Chen, X., Lan, Y., Benko, A., Dósa, G., & Han, X. (2011). Optimal algorithms for online scheduling with bounded rearrangement at the end. Theoretical Computer Science, 412(45), 6269–6278.Google Scholar
  36. Chen, B., van Vliet, A., & Woeginger, G. J. (1994). New lower and upper bounds for on-line scheduling. Operations Research Letters, 16(4), 221–230.Google Scholar
  37. Cho, Y., & Sahni, S. (1980). Bounds for list schedules on uniform processors. SIAM Journal on Computing, 9(1), 91–103.Google Scholar
  38. Ding, N., Lan, Y., Chen, X., Dósa, G., Guo, H., & Han, X. (2014). Online minimum makespan scheduling with a buffer. International Journal of Foundations of Computer Science, 25(05), 525–536.Google Scholar
  39. Dobson, G. (1984). Scheduling independent tasks on uniform processors. SIAM Journal on Computing, 13(4), 705–716.Google Scholar
  40. Dohrau, J. (2015). Online makespan scheduling with sublinear advice. In Proceedings of the 41st international conference on current trends in theory and practice of computer science (SOFSEM2015) (pp. 177–188).Google Scholar
  41. Dolgui, A., Kotov, V., Nekrashevich, A., & Quilliot, A. (2018). General parametric scheme for the online uniform machine scheduling problem with two different speeds. Information Processing Letters, 134, 18–23.Google Scholar
  42. Dósa, G., & Epstein, L. (2010). Online scheduling with a buffer on related machines. Journal of Combinatorial Optimization, 20(2), 161–179.Google Scholar
  43. Dósa, G., Fügenschuh, A., Tan, Z., Tuza, Z., & Węsek, K. (2018). Tight upper bounds for semi-online scheduling on two uniform machines with known optimum. Central European Journal of Operations Research, 26(1), 161–180.Google Scholar
  44. Dósa, G., & He, Y. (2004). Semi-online algorithms for parallel machine scheduling problems. Computing, 72(3–4), 355–363.Google Scholar
  45. Dósa, G., Speranza, M. G., & Tuza, Z. (2011). Two uniform machines with nearly equal speeds: Unified approach to known sum and known optimum in semi on-line scheduling. Journal of Combinatorial Optimization, 21(4), 458–480.Google Scholar
  46. Dósa, G., Wang, Y., Han, X., & Guo, H. (2011). Online scheduling with rearrangement on two related machines. Theoretical Computer Science, 412(8–10), 642–653.Google Scholar
  47. Ebenlendr, T., & Sgall, J. (2009). Optimal and online preemptive scheduling on uniformly related machines. Journal of Scheduling, 12(5), 517–527.Google Scholar
  48. Ebenlendr, T., & Sgall, J. (2011). Semi-online preemptive scheduling: One algorithm for all variants. Theory of Computing Systems, 48(3), 577–613.Google Scholar
  49. Ebenlendr, T., & Sgall, J. (2015). A lower bound on deterministic online algorithms for scheduling on related machines without preemption. Theory of Computing Systems, 56(1), 73–81.Google Scholar
  50. Ehlers, T., & Jansen, K. (2013). Online-scheduling on identical machines with bounded migration. In Proceedings of the 15th international symposium on symbolic and numeric algorithms for scientific computing (SYNASC2013) (pp. 361–366). New York: IEEE.Google Scholar
  51. Englert, M. (2012). An overview of some results for reordering buffers. Computer Science-Research and Development, 27, 217–223.Google Scholar
  52. Englert, M., Özmen, D., & Westermann, M. (2014). The power of reordering for online minimum makespan scheduling. SIAM Journal on Computing, 43(3), 1220–1237.Google Scholar
  53. Epstein, L. (2003). Bin stretching revisited. Acta Informatica, 39(2), 97–117.Google Scholar
  54. Epstein, L., & Favrholdt, L. M. (2005). Optimal non-preemptive semi-online scheduling on two related machines. Journal of Algorithms, 57(1), 49–73.Google Scholar
  55. Epstein, L., Noga, J., Seiden, S. S., Sgall, J., & Woeginger, G. J. (2001). Randomized online scheduling on two uniform machines. Journal of Scheduling, 4(2), 71–92.Google Scholar
  56. Epstein, L., & Ye, D. (2007). Semi-online scheduling with “end of sequence” information. Journal of Combinatorial Optimization, 14(1), 45–61.Google Scholar
  57. Faigle, U., Kern, W., & Turán, G. (1989). On the performance of online algorithms for partition problems. Acta Cybernetica, 9(2), 107–119.Google Scholar
  58. Fleischer, R., & Wahl, M. (2000). Online scheduling revisited. Journal of Scheduling, 3(6), 343–353.Google Scholar
  59. Friesen, D. K. (1987). Tighter bounds for LPT scheduling on uniform processors. SIAM Journal on Computing, 16(3), 554–560.Google Scholar
  60. Gabay, M., Brauner, N., & Kotov, V. (2017). Improved lower bounds for the online bin stretching problem. 4OR: Quarterly Journal of the Belgian, French and Italian Operations Research Societies, 15(2), 183–199.Google Scholar
  61. Gabay, M., Kotov, V., & Brauner, N. (2015). Online bin stretching with bunch techniques. Theoretical Computer Science, 602, 103–113.Google Scholar
  62. Galambos, G., & Woeginger, G. J. (1993). An on-line scheduling heuristic with better worst case ratio than Graham’s list scheduling. SIAM Journal on Computing, 22(2), 349–355.Google Scholar
  63. Gatto, M., & Widmayer, P. (2011). On robust online scheduling algorithms. Journal of Scheduling, 14(2), 141–156.Google Scholar
  64. Gonzalez, T. F., Ibarra, O. H., & Sahni, S. (1977). Bounds for LPT schedules on uniform processors. SIAM Journal on Computing, 6(1), 155–166.Google Scholar
  65. Gormley, T., Reingold, N., Torng, E., & Westbrook, J. (2000). Generating adversaries for request-answer games. In Proceedings of the 11th annual ACM-SIAM symposium on discrete algorithms (SODA2000) (pp. 564–565).Google Scholar
  66. Graham, R. L. (1966). Bounds for certain multiprocessing anomalies. Bell System Technical Journal, 45(9), 1563–1581.Google Scholar
  67. Graham, R. L. (1969). Bounds on multiprocessing timing anomalies. SIAM Journal of Applied Mathematics, 17(2), 416–429.Google Scholar
  68. Han, F., Tan, Z., & Yang, Y. (2012). On the optimality of list scheduling for online uniform machines scheduling. Optimization Letters, 6(7), 1551–1571.Google Scholar
  69. He, Y. (2000). The optimal on-line parallel machine scheduling. Computers and Mathematics with Applications, 39(7–8), 117–121.Google Scholar
  70. He, Y., & Dósa, G. (2005). Semi-online scheduling jobs with tightly-grouped processing times on three identical machines. Discrete Applied Mathematics, 150(1–3), 140–159.Google Scholar
  71. He, Y., & Dósa, G. (2007). Extension of algorithm list scheduling for a semi-online scheduling problem. Central European Journal of Operations Research, 15(1), 97–104.Google Scholar
  72. He, Y., Yang, Q., Tan, Z., & Yao, E. (2002). Algorithms for semi on-line multiprocessor scheduling problems. Journal of Zhejiang University-Science A, 3(1), 60–64.Google Scholar
  73. He, Y., & Zhang, G. (1999). Semi on-line scheduling on two identical machines. Computing, 62(3), 179–187.Google Scholar
  74. Hochbaum, D. S., & Shmoys, D. B. (1987). Using dual approximation algorithms for scheduling problems: Theoretical and practical results. Journal of the ACM, 34(1), 144–162.Google Scholar
  75. Jeż, Ł., Schwartz, J., Sgall, J., & Békési, J. (2013). Lower bounds for online makespan minimization on a small number of related machines. Journal of Scheduling, 16(5), 539–547.Google Scholar
  76. Karger, D. R., Phillips, S. J., & Torng, E. (1996). A better algorithm for an ancient scheduling problem. Journal of Algorithms, 20(2), 400–430.Google Scholar
  77. Kellerer, H., & Kotov, V. (2013). An efficient algorithm for bin stretching. Operations Research Letters, 41(4), 343–346.Google Scholar
  78. Kellerer, H., Kotov, V., & Gabay, M. (2015). An efficient algorithm for semi-online multiprocessor scheduling with given total processing time. Journal of Scheduling, 18(6), 623–630.Google Scholar
  79. Kellerer, H., Kotov, V., Speranza, M. G., & Tuza, Z. (1997). Semi on-line algorithms for the partition problem. Operations Research Letters, 21(5), 235–242.Google Scholar
  80. Kovács, A. (2005). Fast monotone 3-approximation algorithm for scheduling related machines. In Proceedings of the 13th Annual European Symposium on Algorithms (ESA2005) (pp. 616–627).Google Scholar
  81. Kovács, A. (2009). Tighter approximation bounds for LPT scheduling in two special cases. Journal of Discrete Algorithms, 7(3), 327–340.Google Scholar
  82. Kovács, A. (2010). New approximation bounds for LPT scheduling. Algorithmica, 57(2), 413–433.Google Scholar
  83. Lee, K., Leung, J. Y., & Pinedo, M. L. (2013). Makespan minimization in online scheduling with machine eligibility. Annals of Operations Research, 204(1), 189–222.Google Scholar
  84. Lee, K., & Lim, K. (2013). Semi-online scheduling problems on a small number of machines. Journal of Scheduling, 16(5), 461–477.Google Scholar
  85. Li, S., Zhou, Y., Sun, G., & Chen, G . (2007) Study on parallel machine scheduling problem with buffer. In Proceedings of the 2nd international multisymposium on computer and computational sciences (IMSCCS2007) (pp. 278–281).Google Scholar
  86. Li, R., & Shi, L. (1998). An on-line algorithm for some uniform processor scheduling. SIAM Journal on Computing, 27(2), 414–422.Google Scholar
  87. Liu, W., Sidney, J. B., & van Vliet, A. (1996). Ordinal algorithms for parallel machine scheduling. Operations Research Letters, 18(5), 223–232.Google Scholar
  88. Liu, M., Xu, Y., Chu, C., & Zheng, F. (2009). Online scheduling on two uniform machines to minimize the makespan. Theoretical Computer Science, 410(21–23), 2099–2109.Google Scholar
  89. Min, X., Liu, J., & Wang, Y. (2011). Optimal semi-online algorithms for scheduling problems with reassignment on two identical machines. Information Processing Letters, 111(9), 423–428.Google Scholar
  90. Mireault, P., Orlin, J. B., & Vohra, R. V. (1997). A parametric worst case analysis of the LPT heuristic for two uniform machines. Operations Research, 45, 116–125.Google Scholar
  91. Motwani, R., Phillips, S. J., & Torng, E. (1994). Non-clairvoyant scheduling. Theoretical Computer Science, 130(1), 17–47.Google Scholar
  92. Musitelli, A., & Nicoletti, J.-M. (2011). Competitive ratio of list scheduling on uniform machines and randomized heuristics. Journal of Scheduling, 14(1), 89–101.Google Scholar
  93. Ng, C. T., Tan, Z., He, Y., & Cheng, T. C. E. (2009). Two semi-online scheduling problems on two uniform machines. Theoretical Computer Science, 410(8–10), 776–792.Google Scholar
  94. Renault, M. P., Rosén, A., & van Stee, R. (2015). Online algorithms with advice for bin packing and scheduling problems. Theoretical Computer Science, 600, 155–170.Google Scholar
  95. Rudin III, J.F. (2001) Improved bounds for the on-line scheduling problem. PhD thesis, The University of Texas at Dallas.Google Scholar
  96. Rudin, J. F, I. I. I., & Chandrasekaran, R. (2003). Improved bounds for the online scheduling problem. SIAM Journal on Computing, 32(3), 717–735.Google Scholar
  97. Sanders, P., Sivadasan, N., & Skutella, M. (2009). Online scheduling with bounded migration. Mathematics of Operations Research, 34(2), 481–498.Google Scholar
  98. Schieber, B., Shachnai, H., Tamir, G., & Tamir, T. (2018). A theory and algorithms for combinatorial reoptimization. Algorithmica, 80(2), 576–607.Google Scholar
  99. Seiden, S. S., Sgall, J., & Woeginger, G. J. (2000). Semi-online scheduling with decreasing job sizes. Operations Research Letters, 27(5), 215–221.Google Scholar
  100. Sgall, J. (1998). On-line scheduling. In A. Fiat & G. J. Woeginger (Eds.), Online algorithms, the state of the art (pp. 196–231). Berlin: Springer.Google Scholar
  101. Shmoys, D. B., Wein, J., & Williamson, D. P. (1995). Scheduling parallel machines on-line. SIAM Jounral on Computing, 24(6), 1313–1331.Google Scholar
  102. Sun, H., & Fan, R. (2013). Improved semi-online makespan scheduling with a reordering buffer. Information Processing Letters, 113(12), 434–439.Google Scholar
  103. Tan, Z., & He, Y. (2001). Semi-on-line scheduling with ordinal data on two uniform machines. Operations Research Letters, 28(5), 221–231.Google Scholar
  104. Tan, Z., & He, Y. (2002). Semi-on-line problems on two identical machines with combined partial information. Operations Research Letters, 30(6), 408–414.Google Scholar
  105. Tan, Z., & He, Y. (2007). Semi-online scheduling problems on two identical machines with inexact partial information. Theoretical Computer Science, 377(1–3), 110–125.Google Scholar
  106. Tan, Z., & Li, R. (2015). Pseudo lower bounds for online parallel machine scheduling. Operations Research Letters, 43(5), 489–494.Google Scholar
  107. Tan, Z., & Yu, S. (2008). Online scheduling with reassignment. Operations Research Letters, 36(2), 250–254.Google Scholar
  108. Tan, Z., & Zhang, A. (2013). Online and semi-online scheduling. In P. M. Pardalos, D.-Z. Du, & R. Graham (Eds.), Handbook of combinatorial optimization (pp. 2191–2252). Berlin: Springer.Google Scholar
  109. Wang, Y., Benko, A., Chen, X., Dósa, G., Guo, H., Han, X., et al. (2012). Online scheduling with one rearrangement at the end: Revisited. Information Processing Letters, 112(16), 641–645.Google Scholar
  110. Westbrook, J. (2000). Load balancing for response time. Jounral of Algorithms, 35(1), 1–16.Google Scholar
  111. Wu, Y., Tan, Z., & Yang, Q. (2007). Optimal semi-online scheduling algorithms on a small number of machines. In Proceedings of the first international symposium on combinatorics, algorithms, probabilistic and experimental methodologies (ESCAPE2007) (pp. 504–515).Google Scholar
  112. Wu, Y., Yang, Q., & Huang, Y. (2010). Semi-online bin stretching with non-increasing job processing times. In Proceedings of the international conference on computer application and system modeling (ICCASM2010) (Vol. 10, pp. V10–562–V10–566). New York: IEEE.Google Scholar
  113. Zhang, G. (1997). A simple semi on-line algorithm for \({P2}//{{C}_{\max }}\) with a buffer. Information Processing Letters, 61, 145–148.Google Scholar
  114. Zhang, G., & Ye, D. (2002). A note on on-line scheduling with partial information. Computers and Mathematics with Applications, 44(3–4), 539–543.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of HaifaHaifaIsrael

Personalised recommendations