# New strategies for stochastic resource-constrained project scheduling

- 627 Downloads
- 2 Citations

## Abstract

We study the stochastic resource-constrained project scheduling problem or SRCPSP, where project activities have stochastic durations. A solution is a scheduling policy, and we propose a new class of policies that is a generalization of most of the classes described in the literature. A policy in this new class makes a number of a priori decisions in a preprocessing phase, while the remaining scheduling decisions are made online. A two-phase local search algorithm is proposed to optimize within the class. Our computational results show that the algorithm has been efficiently tuned toward finding high-quality solutions and that it outperforms all existing algorithms for large instances. The results also indicate that the optimality gap even within the larger class of elementary policies is very small.

## Keywords

Project scheduling Uncertainty Stochastic activity durations Scheduling policies## References

- Al-Bahar, J. F., & Crandall, K. C. (1990). Systematic risk management approach for construction projects.
*Journal of Construction Engineering and Management*,*116*, 533–546.CrossRefGoogle Scholar - Artigues, C., Leus, R., & Talla Nobibon, F. (2013). Robust optimization for resource-constrained project scheduling with uncertain activity durations.
*Flexible Services and Manufacturing Journal*,*25*(1–2), 175–205.CrossRefGoogle Scholar - Ashtiani, B., Leus, R., & Aryanezhad, M. (2011). New competitive results for the stochastic resource-constrained project scheduling problem: Exploring the benefits of pre-processing.
*Journal of Scheduling*,*14*(2), 157–171.CrossRefGoogle Scholar - Ballestín, F. (2007). When it is worthwhile to work with the stochastic RCPSP?
*Journal of Scheduling*,*10*(3), 153–166.CrossRefGoogle Scholar - Ballestín, F., & Leus, R. (2009). Resource-constrained project scheduling for timely project completion with stochastic activity durations.
*Production and Operations Management*,*18*, 459–474.CrossRefGoogle Scholar - Bendavid, I., & Golany, B. (2011). Predetermined intervals for start times of activities in the stochastic project scheduling problem.
*Annals of Operations Research*,*186*, 429–442.CrossRefGoogle Scholar - Bianchi, L., Dorigo, M., Gambardella, L. M., & Gutjahr, W. J. (2009). A survey on metaheuristics for stochastic combinatorial optimization.
*Natural Computing*,*8*(2), 239–287.CrossRefGoogle Scholar - Blazewicz, J., Lenstra, J. K., & Rinnooy Kan, A. H. G. (1983). Scheduling subject to resource constraints.
*Discrete Applied Mathematics*,*5*, 11–24.CrossRefGoogle Scholar - Bruni, M. E., Beraldi, P., Guerriero, F., & Pinto, E. (2011). A heuristic approach for resource constrained project scheduling with uncertain activity durations.
*Computers & Operations Research*,*38*, 1305–1318.CrossRefGoogle Scholar - Buss, A. H., & Rosenblatt, M. J. (1997). Activity delay in stochastic project networks.
*Operations Research*,*45*(1), 126–139.CrossRefGoogle Scholar - Chapman, C., & Ward, S. (2000). Estimation and evaluation of uncertainty: A minimalist first pass approach.
*International Journal of Project Management*,*18*, 369–383.CrossRefGoogle Scholar - Chtourou, H., & Haouari, M. (2008). A two-stage-priority-rule-based algorithm for robust resource-constrained project scheduling.
*Computers & Industrial Engineering*,*55*, 183–194.CrossRefGoogle Scholar - Creemers, S. (2015). Minimizing the expected makespan of a project with stochastic activity durations under resource constraints.
*Journal of Scheduling*,*18*(3), 263–273.CrossRefGoogle Scholar - Creemers, S., Leus, R., & Lambrecht, M. (2010). Scheduling Markovian PERT networks to maximize the net present value.
*Operations Research Letters*,*38*(1), 51–56.CrossRefGoogle Scholar - Dawood, N. (1998). Estimating project and activity duration: A risk management approach using network analysis.
*Construction Management and Economics*,*16*, 41–48.CrossRefGoogle Scholar - Deblaere, F. (2010).
*Resource constrained project scheduling under uncertainty*. Ph.D. thesis, Department of Applied Economics, KU Leuven, Belgium.Google Scholar - Deblaere, F., Demeulemeester, E., & Herroelen, W. (2011). Proactive policies for the stochastic resource-constrained project scheduling problem.
*European Journal of Operational Research*,*214*(2), 308–316.CrossRefGoogle Scholar - Demeulemeester, E., & Herroelen, W. (2002).
*Project scheduling: A research handbook*. Boston: Kluwer Academic Publishers.Google Scholar - Escudero, L. F., Kamesam, P. V., King, A. J., & Wets, R. J. B. (1993). Production planning via scenario modelling.
*Annals of Operations Research*,*43*, 311–335.Google Scholar - Fang, C., Kolisch, R., Wang, L., & Mu, C. (2015). An estimation of distribution algorithm and new computational results for the stochastic resource-constrained project scheduling problem.
*Flexible Services and Manufacturing Journal*,*27*(4), 585–605.CrossRefGoogle Scholar - Feo, T. A., & Resende, M. G. C. (1995). Greedy randomized adaptive search procedures.
*Journal of Global Optimization*,*6*(2), 109–133.CrossRefGoogle Scholar - Fernandez, A. A., Armacost, R. L., & Pet-Edwards, J. (1996). The role of the non-anticipativity constraint in commercial software for stochastic project scheduling.
*Computers and Industrial Engineering*,*31*, 233–236.CrossRefGoogle Scholar - Fernandez, A. A., Armacost, R. L., & Pet-Edwards, J. (1998). Understanding simulation solutions to resource constrained project scheduling problems with stochastic task durations.
*Engineering Management Journal*,*10*, 5–13.CrossRefGoogle Scholar - Goldberg, D. E. (1989).
*Genetic algorithms in search, optimization, and machine learning*. Reading, MA: Addison-Wesley.Google Scholar - Graham, R. L. (1966). Bounds on multiprocessing timing anomalies.
*Bell System Technical Journal*,*45*, 1563–1581.CrossRefGoogle Scholar - Hartmann, S., & Kolisch, R. (2000). Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem.
*European Journal of Operational Research*,*127*, 394–407.CrossRefGoogle Scholar - Holland, H. J. (1975).
*Adaptation in natural and artificial systems*. Ann Arbor: University of Michigan Press.Google Scholar - Igelmund, G., & Radermacher, F. J. (1983). Preselective strategies for the optimization of stochastic project networks under resource constraints.
*Networks*,*13*, 1–28.CrossRefGoogle Scholar - Kolisch, R. (1996a). Efficient priority rules for the resource-constrained project scheduling problem.
*Journal of Operations Management*,*14*, 172–192.CrossRefGoogle Scholar - Kolisch, R. (1996b). Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation.
*European Journal of Operational Research*,*90*, 320–333.CrossRefGoogle Scholar - Kolisch, R., & Sprecher, A. (1996). PSPLIB—A project scheduling problem library.
*European Journal of Operational Research*,*96*, 205–216.CrossRefGoogle Scholar - Kulkarni, V. G., & Adlakha, V. G. (1986). Markov and Markov-regenerative PERT networks.
*Operations Research*,*34*(5), 769–781.CrossRefGoogle Scholar - Lambrechts, O. (2007).
*Robust project scheduling subject to resource breakdowns*. Ph.D. thesis, KU Leuven, Belgium.Google Scholar - Leus, R. (2003).
*The generation of stable project plans*. Ph.D. thesis, Department of Applied Economics, KU Leuven, Belgium.Google Scholar - Leus, R., & Herroelen, W. (2004). Stability and resource allocation in project planning.
*IIE Transactions*,*36*(7), 667–682.CrossRefGoogle Scholar - Li, H., & Womer, N. K. (2015). Solving stochastic resource-constrained project scheduling problems by closed-loop approximate dynamic programming.
*European Journal of Operational Research*,*246*(1), 20–33.CrossRefGoogle Scholar - Li, K. Y., & Willis, R. J. (1992). An iterative scheduling technique for resource-constrained project scheduling.
*European Journal of Operational Research*,*56*, 370–379.CrossRefGoogle Scholar - Malcolm, D. G., Rosenbloom, J. M., Clark, C. E., & Fazar, W. (1959). Application of a technique for research and development program evaluation.
*Operations Research*,*7*, 646–669.CrossRefGoogle Scholar - Möhring, R. H. (2000). Scheduling under uncertainty: Optimizing against a randomizing adversary. In
*Lecture Notes in Computer Science*(Vol. 1913/2000), pp. 651–670.Google Scholar - Möhring, R. H., & Radermacher, F. J. (1989). The order-theoretic approach to scheduling: The stochastic case. In R. Slowinski, J. Weglarz (Eds.),
*Advances in Project Scheduling*, chapter III.4. Elsevier.Google Scholar - Möhring, R., Radermacher, F., & Weiss, G. (1984). Stochastic scheduling problems I—General strategies.
*ZOR: Zeitschrift für Operations Research*,*28*, 193–260.Google Scholar - Neumann, K., Schwindt, C., & Zimmermann, J. (2006).
*Project scheduling with time windows*. Berlin: Springer.Google Scholar - Özdamar, L., & Ulusoy, G. (1996). A note on an iterative forward/backward scheduling technique with reference to a procedure by Li and Willis.
*European Journal of Operational Research*,*89*, 400–407.CrossRefGoogle Scholar - Pinedo, M. L. (2008).
*Scheduling: Theory, algorithms, and systems*. Berlin: Springer.Google Scholar - Project Management Institute. (2013).
*A guide to the project management body of knowledge (PMBOK*\(^{\textregistered }\)*Guide)*. Project Management Institute Inc.Google Scholar - Radermacher, F. J. (1981). Cost-dependent essential systems of ES-strategies for stochastic scheduling problems.
*Methods of Operations Research*,*42*, 17–31.Google Scholar - Radermacher, F. J. (1985). Scheduling of project networks.
*Annals of Operations Research*,*4*, 227–252.CrossRefGoogle Scholar - Radermacher, F. J. (1986). Analytical vs. combinatorial characterizations of well-behaved strategies in stochastic scheduling.
*Methods of Operations Research*,*53*, 467–475.Google Scholar - Rockafellar, R. T., & Wets, R. J. B. (1991). Scenarios and policy aggregation in optimization under uncertainty.
*Mathematics of Operations Research*,*16*, 119–147.CrossRefGoogle Scholar - Saliby, E. (1990). Descriptive sampling: A better approach to Monte Carlo simulation.
*Journal of the Operational Research Society*,*41*, 1133–1142.CrossRefGoogle Scholar - Schatteman, D., Herroelen, W., Van de Vonder, S., & Boone, A. (2008). A methodology for integrated risk management and proactive scheduling of construction projects.
*Journal of Construction Engineering and Management*,*134*, 885–893.Google Scholar - Shtub, A., Bard, J. F., & Globerson, S. (2005).
*Project management: Processes, methodologies, and economics*. New Jersey: Pearson Prentice Hall.Google Scholar - Sprecher, A. (2000). Scheduling resource-constrained projects competitively at modest memory requirements.
*Management Science*,*46*, 710–723.CrossRefGoogle Scholar - Stork, F. (2001).
*Stochastic resource-constrained project scheduling*. Ph.D. thesis, Technische Universität Berlin.Google Scholar - Valls, V., Ballestín, F., & Quintanilla, S. (2005). Justification and RCPSP: A technique that pays.
*European Journal of Operational Research*,*165*, 375–386.CrossRefGoogle Scholar - Van de Vonder, S., Demeulemeester, E., & Herroelen, W. (2008). Proactive heuristic procedures for robust project scheduling: An experimental analysis.
*European Journal of Operational Research*,*189*(3), 723–733.CrossRefGoogle Scholar - Van de Vonder, S., Demeulemeester, E., Herroelen, W., & Leus, R. (2005). The use of buffers in project management: The trade-off between stability and makespan.
*International Journal of Production Economics*,*97*, 227–240.CrossRefGoogle Scholar - Wang, J. (2004). A fuzzy robust scheduling approach for product development projects.
*European Journal of Operational Research*,*152*, 180–194.CrossRefGoogle Scholar - Wets, R. J. B. (1989).
*The aggregation principle in scenario analysis and stochastic optimization, volume F51 of Nato ASI Series*(pp. 91–113). Springer.Google Scholar - Yu, G., & Qi, X. (2004).
*Disruption management—Framework, models and applications*. New Jersey: World Scientific.CrossRefGoogle Scholar