Online bin stretching with three bins

  • Martin Böhm
  • Jiří Sgall
  • Rob van Stee
  • Pavel Veselý
Article

Abstract

Online bin stretching is a semi-online variant of bin packing in which the algorithm has to use the same number of bins as an optimal packing, but is allowed to slightly overpack the bins. The goal is to minimize the amount of overpacking, i.e., the maximum size packed into any bin. We give an algorithm for online bin stretching with a stretching factor of \(11/8 = 1.375\) for three bins. Additionally, we present a lower bound of \(45/33 = 1.\overline{36}\) for online bin stretching on three bins and a lower bound of 19/14 for four and five bins that were discovered using a computer search.

Keywords

Online algorithms Semi-online algorithms Semi-online scheduling Bin stretching Bin packing Lower bounds for online algorithms Game tree search 

References

  1. Albers, S., & Hellwig, M. (2012). Semi-online scheduling revisited. Theoretical Computer Science, 443, 1–9.CrossRefGoogle Scholar
  2. Aspnes, J., Azar, Y., Fiat, A., Plotkin, S., & Waarts, O. (1997). On-line load balancing with applications to machine scheduling and virtual circuit routing. Journal of the ACM, 44, 486–504.CrossRefGoogle Scholar
  3. Azar, Y., & Regev, O. (1998). On-line bin-stretching. In M. Luby, J. D. P. Rolim, M. Serna (Eds.), Randomization and approximation techniques in computer science (pp. 71–81). Berlin: Springer. http://link.springer.com/book/10.1007%2F3-540-49543-6
  4. Azar, Y., & Regev, O. (2001). On-line bin-stretching. Theoretical Computer Science, 268(1), 17–41.CrossRefGoogle Scholar
  5. Berman, P., Charikar, M., & Karpinski, M. (2000). On-line load balancing for related machines. Journal of Algorithms, 35, 108–121.CrossRefGoogle Scholar
  6. Böhm, M. (2016). Lower bounds for online bin stretching with several bins. In E. Bampis, O. Svensson (Eds.), Student research forum papers and posters at SOFSEM 2016, CEUR WP, vol. 1548. http://www.springer.com/us/book/9783319182629
  7. Böhm, M., Sgall, J., van Stee, R., & Veselý, P. (2014). Better algorithms for online bin stretching. In Approximation and online algorithms (pp. 23–34). Berlin: Springer.Google Scholar
  8. Böhm, M., Sgall, J., van Stee, R., & Veselý, P. (2016). A two-phase algorithm for bin stretching with stretching factor 1.5. ArXiv preprint arXiv:1601.08111v2.
  9. Coffman, E., Jr., Csirik, J., Galambos, G., Martello, S., & Vigo, D. (2013). Bin packing approximation algorithms: Survey and classification. In P. M. Pardalos, D.-Z. Du, & R. L. Graham (Eds.), Handbook of combinatorial optimization (pp. 455–531). New York: Springer.Google Scholar
  10. Ebenlendr, T., Jawor, W., & Sgall, J. (2009). Preemptive online scheduling: Optimal algorithms for all speeds. Algorithmica, 53, 504–522.CrossRefGoogle Scholar
  11. Gabay, M., Brauner, N., & Kotov, V. (2013a). Computing lower bounds for semi-online optimization problems: Application to the bin stretching problem. HAL preprint hal-00921663, version 2.Google Scholar
  12. Gabay, M., Brauner, N., & Kotov, V. (2015). Improved lower bounds for the online bin stretching problem. HAL preprint hal-00921663, version 3.Google Scholar
  13. Gabay, M., Kotov, V., & Brauner, N. (2013b). Semi-online bin stretching with bunch techniques. HAL preprint hal-00869858.Google Scholar
  14. Graham, R. L. (1969). Bounds on multiprocessing timing anomalies. SIAM Journal on Applied Mathematics, 17, 263–269.Google Scholar
  15. Johnson, D. (1973). Near-optimal bin packing algorithms. Massachusetts Institute of Technology, project MAC. Massachusetts Institute of Technology.Google Scholar
  16. Kellerer, H., & Kotov, V. (2013). An efficient algorithm for bin stretching. Operations Research Letters, 41(4), 343–346.CrossRefGoogle Scholar
  17. Kellerer, H., Kotov, V., Speranza, M. G., & Tuza, Z. (1997). Semi on-line algorithms for the partition problem. Operations Research Letters, 21, 235–242.CrossRefGoogle Scholar
  18. Ullman, J. (1971). The performance of a memory allocation algorithm. Technical Report 100.Google Scholar
  19. Zobrist, A. L. (1970). A new hashing method with application for game playing. ICCA Journal, 13.2, 69–73.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Martin Böhm
    • 1
  • Jiří Sgall
    • 1
  • Rob van Stee
    • 2
  • Pavel Veselý
    • 1
  1. 1.Computer Science Institute of Charles UniversityPragueCzech Republic
  2. 2.Department of Computer ScienceUniversity of LeicesterLeicesterUK

Personalised recommendations