Minimizing worst-case and average-case makespan over scenarios

  • Esteban Feuerstein
  • Alberto Marchetti-Spaccamela
  • Frans Schalekamp
  • René Sitters
  • Suzanne van der Ster
  • Leen Stougie
  • Anke van Zuylen
Article

Abstract

We consider scheduling problems over scenarios where the goal is to find a single assignment of the jobs to the machines which performs well over all scenarios in an explicitly given set. Each scenario is a subset of jobs that must be executed in that scenario. The two objectives that we consider are minimizing the maximum makespan over all scenarios and minimizing the sum of the makespans of all scenarios. For both versions, we give several approximation algorithms and lower bounds on their approximability. We also consider some (easier) special cases. Combinatorial optimization problems under scenarios in general, and scheduling problems under scenarios in particular, have seen only limited research attention so far. With this paper, we make a step in this interesting research direction.

Keywords

Job scheduling Approximation algorithm Makespan Scenarios 

References

  1. Ausiello, G., Crescenzi, P., Kann, V., Gambosi, G., Marchetti-Spaccamela, A., & Protasi, M. (1999). Complexity and approximation: Combinatorial optimization problems and their approximability properties. Berlin: Springer.CrossRefGoogle Scholar
  2. Austrin, P., Håstad, J., & Guruswami, V. (2014). \((2+\epsilon )\)-SAT is NP-hard. In: Proceedings of 55th Annual IEEE Symposium on Foundations of Computer Science (pp. 1–10).Google Scholar
  3. Ben-Tal, A., & Nemirovski, A. (2002). Robust optimization—methodology and applications. Mathematical Programming, 92(3), 453–480.CrossRefGoogle Scholar
  4. Birge, J. R., & Louveaux, F. (2011). Introduction to stochastic programming. New York: Springer Science & Business Media.CrossRefGoogle Scholar
  5. Chekuri, C., & Khanna, S. (2004). On multidimensional packing problems. SIAM Journal on Computing, 33(4), 837–851.CrossRefGoogle Scholar
  6. Chen, L., Megow, N., Rischke, R., & Stougie, L. (2015). Stochastic and robust scheduling in the cloud. In: Proceedings of the 18th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (pp. 175–186).Google Scholar
  7. Epstein, L., Levin, A., Marchetti-Spaccamela, A., Megow, N., Mestre, J., Skutella, M., & Stougie, L. (2012). Universal sequencing on an unreliable machine. SIAM Journal on Computing, 41(3), 565–586.Google Scholar
  8. Garey, M. R., & Johnson, D. S. (1990). Computers and intractability: A guide to the theory of NP-completeness. New York: W. H. Freeman & Co.Google Scholar
  9. Goemans, M. X., & Williamson, D. P. (1995). Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the ACM, 42(6), 1115–1145.CrossRefGoogle Scholar
  10. Gupta, A., Pál, M., Ravi, R., & Sinha, A. (2011). Sampling and cost-sharing: Approximation algorithms for stochastic optimization problems. SIAM Journal on Computing, 40(5), 1361–1401.CrossRefGoogle Scholar
  11. Håstad, J. (2001). Some optimal inapproximability results. Journal of the ACM, 48(4), 798–859.CrossRefGoogle Scholar
  12. Jaillet, P. (1985). Probabilistic traveling salesman problems. Technical Report 185, Operations Research Center, MIT.Google Scholar
  13. Jaillet, P. (1988). A priori solution of a traveling salesman problem in which a random subset of the customers are visited. Operations Research, 36, 929–936.CrossRefGoogle Scholar
  14. Karloff, H. J., & Zwick, U. (1997). A 7/8-approximation algorithm for MAX 3SAT? In: Proceedings of 38th Annual IEEE Symposium on Foundations of Computer Science (pp. 406–415).Google Scholar
  15. Kasperski, A., Kurpisz, A., & Zieliński, P. (2012). Parallel machine scheduling under uncertainty. In: Proceedings of 14th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU) (pp. 74–83).Google Scholar
  16. Kasperski, A., Kurpisz, A., & Zieliński, P. (2013). Approximating the min-max (regret) selecting items problem. Information Processing Letters, 113, 23–29.CrossRefGoogle Scholar
  17. Kasperski, A., & Zieliński, P. (2016). Single machine scheduling problems with uncertain parameters and the OWA criterion. Journal of Scheduling, 19, 177–190.CrossRefGoogle Scholar
  18. Khot, S. (2002). On the power of unique 2-prover 1-round games. In: Proceedings of 34th ACM Symposium on Theory of Computing (pp. 767–775).Google Scholar
  19. Khot, S., Kindler, G., Mossel, E., & O’Donnell, R. (2007). Optimal inapproximability results for MAX-CUT and other 2-variable CSPs? SIAM Journal on Computing, 37(1), 319–357.CrossRefGoogle Scholar
  20. Kleywegt, A., Shapiro, A., & de Mello, T. H. (2002). The sample average approximation method for stochastic discrete optimization. SIAM Journal on Optimization, 12(2), 479–502.CrossRefGoogle Scholar
  21. Lin, X., Janak, S., & Floudas, C. (2004). A new robust optimization approach for scheduling under uncertainty: I. bounded uncertainty. Computers and Chemical Engineering, 28, 1069–1085.Google Scholar
  22. Oriolo, G., Sanità, L., & Zenklusen, R. (2013). Network design with a discrete set of traffic matrices. Operations Research Letters, 41(4), 390–396.CrossRefGoogle Scholar
  23. Pinedo, M. (2012). Theory, scheduling algorithms and systems. Berlin: Springer.Google Scholar
  24. Wang, Z., & Chan, F. (2015). A robust replenishment and production control policy for a single-stage production/inventory system with inventory inaccuracy. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 45(2), 326–337.CrossRefGoogle Scholar
  25. Zhang, J., Ye, Y., & Han, Q. (2004). Improved approximations for max set splitting and max NAE SAT. Discrete Applied Mathematics, 142(1–3), 133–149.CrossRefGoogle Scholar
  26. Zwick, U. (1999). Outward rotations: A tool for rounding solutions of semidefinite programming relaxations, with applications to MAX CUT and other problems. In: Proceedings of 31st ACM Symposium on Theory of Computing (pp. 679–687).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Esteban Feuerstein
    • 1
  • Alberto Marchetti-Spaccamela
    • 2
  • Frans Schalekamp
    • 3
  • René Sitters
    • 4
  • Suzanne van der Ster
    • 5
  • Leen Stougie
    • 4
  • Anke van Zuylen
    • 6
  1. 1.Universidad de Buenos AiresBuenos AiresArgentina
  2. 2.Sapienza Università di RomaRomeItaly
  3. 3.Cornell UniversityIthacaUSA
  4. 4.Vrije Universiteit & CWIAmsterdamThe Netherlands
  5. 5.Technische Universität MünchenMunichGermany
  6. 6.College of William and MaryWilliamsburgUSA

Personalised recommendations