Advertisement

Journal of Scheduling

, Volume 19, Issue 1, pp 43–60 | Cite as

A genetic algorithm for the robust resource leveling problem

  • Hongbo Li
  • Erik DemeulemeesterEmail author
Article

Abstract

The resource leveling problem (RLP) involves the determination of a project baseline schedule that specifies the planned activity starting times while satisfying both the precedence constraints and the project deadline constraint under the objective of minimizing the variation in the resource utilization. However, uncertainty is inevitable during project execution. The baseline schedule generated by the deterministic RLP model tends to fail to achieve the desired objective when durations are uncertain. We study the robust resource leveling problem in which the activity durations are stochastic and the objective is to obtain a robust baseline schedule that minimizes the expected positive deviation of both resource utilizations and activity starting times. We present a genetic algorithm for the robust RLP. In order to demonstrate the effectiveness of our genetic algorithm, we conduct extensive computational experiments on a large number of randomly generated test instances and investigate the impact of different factors (the marginal cost of resource usage deviations, the marginal cost of activity starting time deviations, the activity duration variability, the due date, the order strength, the resource factor and the resource constrainedness).

Keywords

Project scheduling Robust resource leveling Stochastic activity durations Genetic algorithm 

Notes

Acknowledgments

The authors thank the reviewers for providing valuable suggestions that have improved the quality of this paper. The research of Hongbo Li is supported by the Research Center for Operations Management of the KU Leuven, the National Natural Science Foundation of China under Grant No. 71271019, the China Postdoctoral Science Foundation under Grant No. 2015M571542, the Humanities and Social Sciences Foundation of the Ministry of Education of China under grant 15YJCZH077 and a scholarship from the China Scholarship Council.

References

  1. Ahuja, H. N. (1976). Construction performance control by networks. New York: Wiley.Google Scholar
  2. Ashuri, B., & Tavakolan, M. (2012). Fuzzy enabled hybrid genetic algorithm-particle swarm optimization approach to solve TCRO problems in construction project planning. Journal of Construction Engineering and Management, 138(9), 1065–1074.CrossRefGoogle Scholar
  3. Ballestín, F. (2007). When it is worthwhile to work with the stochastic RCPSP? Journal of Scheduling, 10(3), 153–166.CrossRefGoogle Scholar
  4. Ballestín, F., Schwindt, C., & Zimmermann, J. (2007). Resource leveling in make-to-order production: Modeling and heuristic solution method. International Journal of Operations Research, 4(1), 50–62.Google Scholar
  5. Bandelloni, M., Tucci, M., & Rinaldi, R. (1994). Optimal resource leveling using non-serial dyanamic programming. European Journal of Operational Research, 78(2), 162–177.CrossRefGoogle Scholar
  6. Burgess, A. R., & Killebrew, J. B. (1962). Variation in activity level on a cyclic arrow diagram. Journal of Industrial Engineering, 13(2), 76–83.Google Scholar
  7. Chan, W. T., Chua, D. K., & Kannan, G. (1996). Construction resource scheduling with genetic algorithms. Journal of Construction Engineering and Management, 122(2), 125–132.CrossRefGoogle Scholar
  8. Debels, D., & Vanhoucke, M. (2007). A decomposition-based genetic algorithm for the resource-constrained project-scheduling problem. Operations Research, 55(3), 457–469.CrossRefGoogle Scholar
  9. Deblaere, F., Demeulemeester, E., & Herroelen, W. (2011). Proactive policies for the stochastic resource-constrained project scheduling problem. European Journal of Operational Research, 214(2), 308–316.CrossRefGoogle Scholar
  10. Demeulemeester, E. L., & Herroelen, W. (2002). Project scheduling: A research handbook. Boston: Kluwer Academic Pub.Google Scholar
  11. Demeulemeester, E. L., & Herroelen, W. (2011). Robust project scheduling (Vol. 3, No. 3–4). Delft: Now Publishers Inc.Google Scholar
  12. Demeulemeester, E., Vanhoucke, M., & Herroelen, W. (2003). RanGen: A random network generator for activity-on-the-node networks. Journal of Scheduling, 6(1), 17–38.CrossRefGoogle Scholar
  13. Easa, S. M. (1989). Resource leveling in construction by optimization. Journal of Construction Engineering and Management, 115(2), 302–316.CrossRefGoogle Scholar
  14. El-Rayes, K., & Jun, D. H. (2009). Optimizing resource leveling in construction projects. Journal of Construction Engineering and Management, 135(11), 1172–1180.CrossRefGoogle Scholar
  15. Gather, T., Zimmermann, J., & Bartels, J. H. (2011). Exact methods for the resource levelling problem. Journal of Scheduling, 14(6), 557–569.CrossRefGoogle Scholar
  16. Goldberg, D. E., Korb, B., & Deb, K. (1989). Messy genetic algorithms: Motivation, analysis, and first results. Complex Systems, 3, 493–530.Google Scholar
  17. Hariga, M., & El-Sayegh, S. M. (2011). Cost optimization model for the multiresource leveling problem with allowed activity splitting. Journal of Construction Engineering and Management, 137(1), 56–64.CrossRefGoogle Scholar
  18. Harris, R. B. (1990). Packing method for resource leveling (PACK). Journal of Construction Engineering and Management, 116(2), 331–350.CrossRefGoogle Scholar
  19. Hartmann, S. (2002). A self-adapting genetic algorithm for project scheduling under resource constraints. Naval Research Logistics, 49(5), 433–448.CrossRefGoogle Scholar
  20. Herroelen, W., & De Reyck, B. (1999). Phase transitions in project scheduling. Journal of the Operational Research Society, 50(2), 148–156.CrossRefGoogle Scholar
  21. Herroelen, W., De Reyck, B., & Demeulemeester, E. (2000). On the paper “Resource-constrained project scheduling: Notation, classification, models and methods” by Brucker et al. European Journal of Operational Research, 128(3), 221–230.Google Scholar
  22. Herroelen, W., & Leus, R. (2004a). Robust and reactive project scheduling: A review and classification of procedures. International Journal of Production Research, 42(8), 1599–1620.CrossRefGoogle Scholar
  23. Herroelen, W., & Leus, R. (2004b). The construction of stable project baseline schedules. European Journal of Operational Research, 156(3), 550–565.CrossRefGoogle Scholar
  24. Herroelen, W., & Leus, R. (2005). Project scheduling under uncertainty: Survey and research potentials. European Journal of Operational Research, 165(2), 289–306.CrossRefGoogle Scholar
  25. Ke, H., & Liu, B. (2005). Project scheduling problem with stochastic activity duration times. Applied Mathematics and Computation, 168(1), 342–353.CrossRefGoogle Scholar
  26. Kelley, J. E., & Walker, M. R. (1959). Critical-path planning and scheduling. In Proceedings of the Eastern Joint Computer Conference (pp. 160–173).Google Scholar
  27. Kolisch, R., & Sprecher, A. (1997). PSPLIB: A project scheduling problem library. European Journal of Operational Research, 96(1), 205–216.CrossRefGoogle Scholar
  28. Kreter, S., Rieck, J., & Zimmermann, J. (2014). The total adjustment cost problem: Applications, models, and solution algorithms. Journal of Scheduling, 17(2), 145–160.CrossRefGoogle Scholar
  29. Lamas, P., & Demeulemeester, E. (2015). A purely proactive scheduling procedure for the resource-constrained project scheduling problem with stochastic activity durations. Journal of Scheduling, 1–20. doi: 10.1007/s10951-015-0423-3.
  30. Lambrechts, O., Demeulemeester, E., & Herroelen, W. (2008). Proactive and reactive strategies for resource-constrained project scheduling with uncertain resource availabilities. Journal of Scheduling, 11(2), 121–136.CrossRefGoogle Scholar
  31. Leu, S. S., Chen, A. T., & Yang, C. H. (1999). A fuzzy optimal model for construction resource leveling scheduling. Canadian Journal of Civil Engineering, 26(6), 673–684.CrossRefGoogle Scholar
  32. Leu, S. S., Yang, C. H., & Huang, J. C. (2000). Resource leveling in construction by genetic algorithm-based optimization and its decision support system application. Automation in Construction, 10(1), 27–41.CrossRefGoogle Scholar
  33. Leu, S. S., & Hung, T. H. (2002). An optimal construction resource leveling scheduling simulation model. Canadian Journal of Civil Engineering, 29(2), 267–275.CrossRefGoogle Scholar
  34. Li, H., Xu, Z., & Demeulemeester, E. (2015). Scheduling policies for the stochastic resource leveling problem. Journal of Construction Engineering and Management, 141(2), 04014072.CrossRefGoogle Scholar
  35. Liu, B. (2009). Stochastic programming. Theory and practice of uncertain programming (2nd ed., pp. 25–56). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  36. Masmoudi, M., & Haït, A. (2013). Project scheduling under uncertainty using fuzzy modelling and solving techniques. Engineering Applications of Artificial Intelligence, 26(1), 135–149.CrossRefGoogle Scholar
  37. Neumann, K., & Zimmermann, J. (1999). Resource levelling for projects with schedule-dependent time windows. European Journal of Operational Research, 117(3), 591–605.CrossRefGoogle Scholar
  38. Neumann, K., & Zimmermann, J. (2000). Procedures for resource leveling and net present value problems in project scheduling with general temporal and resource constraints. European Journal of Operational Research, 127(2), 425–443.CrossRefGoogle Scholar
  39. Neumann, K., Schwindt, C., & Zimmermann, J. (2003). Project scheduling with time windows and scarce resources. Berlin: Springer.CrossRefGoogle Scholar
  40. Ponz-Tienda, J. L., Yepes, V., Pellicer, E., & Moreno-Flores, J. (2013). The Resource Leveling Problem with multiple resources using an adaptive genetic algorithm. Automation in Construction, 29, 161–172.CrossRefGoogle Scholar
  41. Ranjbar, M. (2013). A path-relinking metaheuristic for the resource levelling problem. Journal of the Operational Research Society, 64(7), 1071–1078.CrossRefGoogle Scholar
  42. Rieck, J., Zimmermann, J., & Gather, T. (2012). Mixed-integer linear programming for resource leveling problems. European Journal of Operational Research, 221(1), 27–37.CrossRefGoogle Scholar
  43. Tang, L., Zhao, Y., & Liu, J. (2014). An improved differential evolution algorithm for practical dynamic scheduling in steelmaking-continuous casting production. IEEE Transactions on Evolutionary Computation, 18(2), 209–225.CrossRefGoogle Scholar
  44. Valls, V., Ballestin, F., & Quintanilla, S. (2008). A hybrid genetic algorithm for the resource-constrained project scheduling problem. European Journal of Operational Research, 185(2), 495–508.CrossRefGoogle Scholar
  45. Van de Vonder, S., Demeulemeester, E., Herroelen, W., & Leus, R. (2005). The use of buffers in project management: The trade-off between stability and makespan. International Journal of Production Economics, 97(2), 227–240.CrossRefGoogle Scholar
  46. Van de Vonder, S., Ballestin, F., Demeulemeester, E., & Herroelen, W. (2007a). Heuristic procedures for reactive project scheduling. Computers & Industrial Engineering, 52(1), 11–28.CrossRefGoogle Scholar
  47. Van de Vonder, S., Demeulemeester, E., & Herroelen, W. (2007b). A classification of predictive-reactive project scheduling procedures. Journal of Scheduling, 10(3), 195–207.CrossRefGoogle Scholar
  48. Van de Vonder, S., Demeulemeester, E., & Herroelen, W. (2008). Proactive heuristic procedures for robust project scheduling: An experimental analysis. European Journal of Operational Research, 189(3), 723–733.CrossRefGoogle Scholar
  49. Wiest, J., & Levy, F. (1977). A management guide to PERT/CPM. Englewood Cliffs: Prentice Hall.Google Scholar
  50. Wullink, G., Gademann, A. J. R. M., Hans, E. W., & Van Harten, A. (2004). Scenario-based approach for flexible resource loading under uncertainty. International Journal of Production Research, 42(24), 5079–5098.CrossRefGoogle Scholar
  51. Wullink, G. (2005). Resource loading under uncertainty. PhD thesis, University of Twente.Google Scholar
  52. Zahraie, B., & Tavakolan, M. (2009). Stochastic time-cost-resource utilization optimization using nondominated sorting genetic algorithm and discrete fuzzy sets. Journal of Construction Engineering and Management, 135(11), 1162–1171.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of ManagementShanghai UniversityShanghaiChina
  2. 2.Research Center for Operations Management, Faculty of Business and EconomicsKU LeuvenLeuvenBelgium
  3. 3.School of Economics and ManagementBeihang UniversityBeijingChina

Personalised recommendations