Advertisement

Journal of Scheduling

, Volume 19, Issue 5, pp 563–582 | Cite as

A reclaimer scheduling problem arising in coal stockyard management

  • Enrico Angelelli
  • Thomas Kalinowski
  • Reena Kapoor
  • Martin W. P. Savelsbergh
Article

Abstract

We study a number of variants of an abstract scheduling problem inspired by the scheduling of reclaimers in the stockyard of a coal export terminal. We analyze the complexity of each of the variants, providing complexity proofs for some and polynomial algorithms for others. For one, especially interesting variant, we also develop a constant factor approximation algorithm.

Keywords

Reclaimer scheduling Stockyard management Approximation algorithm Complexity 

Notes

Acknowledgments

This research was supported by the ARC Linkage Grant nos. LP1102000524 and HVCCC P/L.

References

  1. Bierwirth, C., & Meisel, F. (2009). A fast heuristic for quay crane scheduling with interference constraints. Journal of Scheduling, 12(4), 345–360.CrossRefGoogle Scholar
  2. Bierwirth, C., & Meisel, F. (2010). A survey of berth allocation and quay crane scheduling problems in container terminals. European Journal of Operational Research, 202(3), 615–627.CrossRefGoogle Scholar
  3. Boland, N., Gulczynski, D., & Savelsbergh, M. (2012). A stockyard planning problem. EURO Journal on Transportation and Logistics, 1(3), 197–236.CrossRefGoogle Scholar
  4. Daganzo, C. F. (1989). The crane scheduling problem. Transportation Research Part B, 23(3), 159–175.CrossRefGoogle Scholar
  5. Hu, D., & Yao, Z. (2012). Stacker-reclaimer scheduling in a dry bulk terminal. International Journal of Computer Integrated Manufacturing, 25(11), 1047–1058.CrossRefGoogle Scholar
  6. Kim, K. H., & Park, Y.-M. (2004). A crane scheduling method for port container terminals. European Journal of Operational Research, 156(3), 752–768.CrossRefGoogle Scholar
  7. Kim, K. Y., & Kim, K. H. (1999). A routing algorithm for a single straddle carrier to load export containers onto a containership. International Journal of Production Economics, 59(1), 425–433.Google Scholar
  8. Kim, K. Y., & Kim, K. H. (2003). Heuristic algorithms for routing yard-side equipment for minimizing loading times in container terminals. Naval Research Logistics (NRL), 50(5), 498–514.CrossRefGoogle Scholar
  9. Legato, P., Trunfio, R., & Meisel, F. (2012). Modeling and solving rich quay crane scheduling problems. Computers & Operations Research, 39(9), 2063–2078.CrossRefGoogle Scholar
  10. Lim, A., Rodrigues, B., & Xu, Z. (2007). A m-parallel crane scheduling problem with a non-crossing constraint. Naval Research Logistics (NRL), 54(2), 115–127.CrossRefGoogle Scholar
  11. Liu, J., Wan, Y.-W., & Wang, L. (2006). Quay crane scheduling at container terminals to minimize the maximum relative tardiness of vessel departures. Naval Research Logistics (NRL), 53(1), 60–74.CrossRefGoogle Scholar
  12. Moccia, L., Cordeau, J.-F., Gaudioso, M., & Laporte, G. (2006). A branch-and-cut algorithm for the quay crane scheduling problem in a container terminal. Naval Research Logistics (NRL), 53(1), 45–59.CrossRefGoogle Scholar
  13. Ng, W. (2005). Crane scheduling in container yards with inter-crane interference. European Journal of Operational Research, 164(1), 64–78.CrossRefGoogle Scholar
  14. Ng, W. C., & Mak, K. L. (2005a). An effective heuristic for scheduling a yard crane to handle jobs with different ready times. Engineering Optimization, 37(8), 867–877.CrossRefGoogle Scholar
  15. Ng, W. C., & Mak, K. L. (2005b). Yard crane scheduling in port container terminals. Applied Mathematical Modelling, 29(3), 263–276.CrossRefGoogle Scholar
  16. Ng, W. C., & Mak, K. L. (2006). Quay crane scheduling in container terminals. Engineering Optimization, 38(6), 723–737.CrossRefGoogle Scholar
  17. Petering, M. E. (2009). Effect of block width and storage yard layout on marine container terminal performance. Transportation Research Part E, 45(4), 591–610.CrossRefGoogle Scholar
  18. Peterkofsky, R. I., & Daganzo, C. F. (1990). A branch and bound solution method for the crane scheduling problem. Transportation Research Part B, 24(3), 159–172.CrossRefGoogle Scholar
  19. Psaraftis, H. N., Solomon, M. M., Magnanti, T. L., & Kim, T.-U. (1990). Routing and scheduling on a shoreline with release times. Management Science, 36(2), 212–223.CrossRefGoogle Scholar
  20. D. Sun, L. Tang, Benders approach for the raw material transportation scheduling problem in steel industry, in 2013 10th IEEE International Conference on Control and Automation (ICCA), pp. 481–484Google Scholar
  21. Tsitsiklis, J. N. (1992). Special cases of traveling salesman and repairman problems with time windows. Networks, 22(3), 263–282.CrossRefGoogle Scholar
  22. Zhang, C., Wan, Y.-W., Liu, J., & Linn, R. J. (2002). Dynamic crane deployment in container storage yards. Transportation Research Part B, 36(6), 537–555.CrossRefGoogle Scholar
  23. Zhu, Y., & Lim, A. (2006). Crane scheduling with non-crossing constraint. The Journal of the Operational Research Society, 57(12), 1464–1471.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Enrico Angelelli
    • 1
  • Thomas Kalinowski
    • 2
  • Reena Kapoor
    • 2
  • Martin W. P. Savelsbergh
    • 3
  1. 1.University of BresciaBresciaItaly
  2. 2.University of NewcastleNewcastleAustralia
  3. 3.Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations