Journal of Scheduling

, Volume 16, Issue 5, pp 529–538 | Cite as

On multiprocessor temperature-aware scheduling problems

  • Evripidis Bampis
  • Dimitrios Letsios
  • Giorgio Lucarelli
  • Evangelos Markakis
  • Ioannis Milis
Article

Abstract

We study temperature-aware scheduling problems under the model introduced in [Chrobak et al. AAIM 2008], where unit-length jobs of given heat contributions and common release dates are to be scheduled on a set of parallel identical processors. We consider three optimization criteria: makespan, maximum temperature and (weighted) average temperature. On the positive side, we present polynomial time approximation algorithms for the minimization of the makespan and the maximum temperature, as well as, optimal polynomial time algorithms for minimizing the average temperature and the weighted average temperature. On the negative side, we prove that there is no approximation algorithm of absolute ratio \(\frac{4}{3}-\epsilon \) for the problem of minimizing the makespan for any \(\epsilon > 0\), unless \(\mathcal{P}=\mathcal{NP}\).

Keywords

Temperature-aware scheduling Identical processors Approximation algorithms Inapproximability 

References

  1. Albers, S. (2010). Energy-efficient algorithms. Communications of the ACM, 53, 86–96.CrossRefGoogle Scholar
  2. Albers, S. (2011). Algorithms for dynamic speed scaling. In T. Schwentick & C. Dürr (Eds.), 28th International Symposium on Theoretical Aspects of Computer Science (STACS’11), vol 9 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.Google Scholar
  3. Alon, N., Azar, Y., Woeginger, G., & Yadid, T. (1998). Approximation schemes for scheduling on parallel machines. Journal of Scheduling, 1, 55–66. Google Scholar
  4. Atkins, L., Aupy, G., Cole, G., & Pruhs, K. (2011). Speed scaling to manage temperature. In A. Marchetti-Spaccamela & M. Segal (Eds.) 1st International ICST Conference on Theory and Practice of Algorithms in Computer Systems (TAPAS’11), (vol 6595 of LNCS, pp 9–20). Springer,Google Scholar
  5. Bansal, N., Kimbrel, T., & Pruhs, K. (2007). Speed scaling to manage energy and temperature. Journal of the ACM, 54(1):Article 3.Google Scholar
  6. Birks, M., Cole, D., Fung, S. P. Y., & Xue, H. (2011a). Online algorithms for maximizing weighted throughput of unit jobs with temperature constraints. In M. J. Atallah, X.-Y. Li, & B. Zhu (Eds.), Joint International Conference on Frontiers in Algorithmics and Algorithmic Aspects in Information and Management (FAW-AAIM’11), (vol 6681 of LNCS, pp 319–329). Springer: New York.Google Scholar
  7. Birks, M., & Fung, S. P. Y. (2010). Temperature aware online scheduling with a low cooling factor. In J. Kratochvíl, A. Li, J. Fiala, & P. Kolman (Eds.), 7th Annual Conference on Theory and Applications of Models of Computation (TAMC’10), (vol 6108 of LNCS, pp 105–116). Springer: New York.Google Scholar
  8. Birks, M., & Fung, S. P. Y. (2011b). Temperature aware online algorithms for scheduling equal length jobs. In M. J. Atallah, X-Y. Li, & B. Zhu (Eds.), Joint International Conference on Frontiers in Algorithmics and Algorithmic Aspects in Information and Management (FAW-AAIM’11), (vol 6681 of LNCS, pp 330–342). Springer: New York.Google Scholar
  9. Chrobak, M., Ch. Dürr, Hurand, M., & Robert, J. (2008). Algorithms for temperature-aware task scheduling in microprocessor systems. In R. Fleischer & J. Xu (Eds.), 4th International Conference on Algorithmic Aspects in Information and Management (AAIM’08), (vol 5034 of LNCS, pp 120–130). Springer: New York.Google Scholar
  10. Gabow, H. N. (1985). A scaling algorithm for weighted matching on general graphs. In 26th Annual Symposium of the Foundations of Computer Science (FOCS’85), (pp 90–100). IEEE Computer Society.Google Scholar
  11. Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of NP-completeness. San Francisco: Freeman.Google Scholar
  12. Graham, R. L. (1969). Bounds on multiprocessing timing anomalies. SIAM Journal on Applied Mathematics, 17, 416–426.CrossRefGoogle Scholar
  13. Graham, R. L., Lawler, E. L., Lenstra, J. K., & Rinnooy Kan, A. H. G. (1979). Optimization and approximation in deterministic sequencing and scheduling. Annals of Discrete Mathematics, 5, 287–326.CrossRefGoogle Scholar
  14. Hochbaum, D. S., & Shmoys, D. B. (1987). Using dual approximation algorithms for scheduling problems: Theoretical and practical results. Journal of the ACM, 34, 144–162.CrossRefGoogle Scholar
  15. Irani, S., & Pruhs, K. R. (2005). Algorithmic problems in power management. ACM SIGACT News, 36, 63–76.CrossRefGoogle Scholar
  16. Pinedo, M. (1995). Scheduling: Theory, algorithms and systems. Upper Saddle River: Prentice-Hall.Google Scholar
  17. Yang, J., Zhou, X., Chrobak, M., Zhang, Y., & Jin, L. (2008). Dynamic thermal management through task scheduling. In IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS’08), (pp 191–201). IEEE Computer Society.Google Scholar
  18. Zhang, S., & Chatha, K. S. (2007). Approximation algorithm for the temperature-aware scheduling problem. In G. G. E. Gielen (Ed.), IEEE/ACM International Conference on Computer-Aided Design (ICCAD’07), (pp 281–288). IEEE Press.Google Scholar
  19. Zhou, X., Yang, J., Chrobak, M., & Zhang, Y. (2010). Performance-aware thermal management via task scheduling. ACM Transactions on Architecture and Code Optimization, 7, 1–31.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Evripidis Bampis
    • 1
  • Dimitrios Letsios
    • 1
    • 2
  • Giorgio Lucarelli
    • 1
    • 2
  • Evangelos Markakis
    • 3
  • Ioannis Milis
    • 3
  1. 1.LIP6Université Pierre et Marie CurieParisFrance
  2. 2.IBISCUniversité d’ ÉvryParisFrance
  3. 3.Department of InformaticsAthens University of Economics ansd BusinessAthensGreece

Personalised recommendations