Advertisement

Journal of Scheduling

, Volume 15, Issue 6, pp 717–731 | Cite as

Hybridising GRASP and network flows in the solution of a medical school scheduling problem

  • Melissa D. Goodman
  • Kathryn A. Dowsland
  • Jonathan M. Thompson
Article

Abstract

This paper tackles the problem of allocating medical students to clinical specialities over a number of time periods. Each speciality is offered by a number of consultant led ‘firms’ and the objective is to optimise the schedule in terms of ensuring a broad range of experience for each student, whilst ensuring that every student covers every speciality exactly once without exceeding the number of places available in each firm. The balance between feasibility and optimality is a key issue. We develop a family of GRASP heuristics for the problem, all based on the same local search heuristic, but using a variety of constructions. These use different building blocks, different score functions, and different ways of balancing feasibility and optimality. Empirical tests show that the best heuristic, based on large building blocks facilitated by the use of a network flow model, and enhanced by feedback in the form of partial reconstructions, performs extremely well on real data, and is able to produce acceptable solutions on more challenging artificial problem instances.

Keywords

GRASP Scheduling Hybrid Network flow 

References

  1. Aiex, R. M., Binato, S., & Resende, M. G. C. (2003). Parallel GRASP with path-relinking for job shop scheduling. Parallel Computing, 29, 393–430. CrossRefGoogle Scholar
  2. Blum, C., & Roli, R. (2003). Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Computing Surveys, 35(3), 268–308. CrossRefGoogle Scholar
  3. Casey, S., & Thompson, J. (2003). GRASPing the examination scheduling problem. In E. Burke & P. De Causmaecker (Eds.), Lecture notes in computer science: Vol. 2740. PATAT 2002 (pp. 232–244). Google Scholar
  4. Drexl, A., & Salewski, F. (1997). Distribution requirements and compactness constraints in school timetabling. European Journal of Operational Research, 102, 193–214. CrossRefGoogle Scholar
  5. Feo, T. A., & Resende, M. G. C. (1995). Greedy randomized adaptive search procedures. Journal of Global Optimization, 6, 109–133. CrossRefGoogle Scholar
  6. Feo, T. A., Resende, M. G. C., & Smith, S. H. (1994). A greedy randomised adaptive search procedure for maximum independent set. Operational Research, 42, 860–878. Google Scholar
  7. Festa, P., & Resende, M. G. C. (2004). An annotated bibliography of GRASP: AT&T Labs (Research technical report TD-5WYSEW). Google Scholar
  8. Fleurent, C., & Glover, F. (1999). Improved constructive multistart strategies for the quadratic assignment problem using adaptive memory. INFORMS Journal on Computing, 11, 198–204. CrossRefGoogle Scholar
  9. Goodman, M. (2007). Construction–based metaheuristics for personnel scheduling problems. Ph.D. Thesis, Cardiff University. Google Scholar
  10. Goodman, M., Dowsland, K. A., & Thompson, J. M. (2009). A grasp-knapsack hybrid for a nurse-scheduling problem. Journal of Heuristics, 15(4), 351–379. CrossRefGoogle Scholar
  11. Laguna, M., & Martí, R. (2001). A GRASP for coloring sparse graphs. Computational Optimization and Applications, 19, 165–178. CrossRefGoogle Scholar
  12. Pitsoulis, L., & Resende, M. G. C. (2001). Greedy randomized adaptive search procedures. In M. P. Pardalos & M. G. C. Resende (Eds.), Handbook of applied optimization (pp. 168–181). Google Scholar
  13. Rojanasoonthon, S., & Bard, J. (2005). A GRASP for parallel machine scheduling with time windows. INFORMS Journal on Computing, 17(1), 32–51. CrossRefGoogle Scholar
  14. Resende, M. G. C. (2001). Greedy randomized adaptive search procedures (GRASP) (Vol. 2, pp. 373–382). Dordrecht: Kluwer Academic. Google Scholar
  15. Resende, M. G. C., & Festa, P. (2003). An updated bibliography of GRASP: AT&T Labs Research Technical Report TD-5SB7BK. Google Scholar
  16. Resende, M. G. C., & Ribeiro, C. C. (2002). Greedy randomized adaptive search procedures. In F. Glover & G. A. Kochenberger (Eds.), Handbook of metaheuristics (pp. 219–249). Dordrecht: Kluwer Academic. Google Scholar
  17. Robertson, A. J. (2001). A set of greedy randomized adaptive local search procedure (GRASP) implementations for the multidimensional assignment problem. Computational Optimization and Applications, 19(2), 145–164. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Melissa D. Goodman
    • 1
  • Kathryn A. Dowsland
    • 2
  • Jonathan M. Thompson
    • 3
  1. 1.Corda, BAE SystemsGuildfordUK
  2. 2.Gower Optimal Algorithms Ltd.Newton, SwanseaUK
  3. 3.School of MathematicsCardiff UniversityCardiffUK

Personalised recommendations