Journal of Scheduling

, Volume 15, Issue 5, pp 513–535 | Cite as

Multi-objective scheduling and a resource allocation problem in hospitals

Article

Abstract

This study addresses the issue of scheduling medical treatments for resident patients in a hospital. Schedules are made daily according to the restrictions on medical equipment and physicians who are being assigned at the same time. The problem is formulated as a multi-objective binary integer programming (BIP) model. Three types of metaheuristics are proposed and implemented to deal with the discrete search space, numerous variables, constraints and multiple objectives: a variable neighborhood search (VNS)-based method, scatter search (SS)-based methods and a non-dominated sorting genetic algorithm (NSGA-II). This paper also provides the results of computational experiments and compares their ability to find efficient solutions to the multi-objective scheduling problem.

Keywords

Scheduling Hospitals Multi-objective metaheuristics 

References

  1. Beliën, J., & Demeulemeester, E. (2007). Building cyclic master surgery schedules with leveled resulting bed occupancy. European Journal of Operational Research, 176, 1185–1204. CrossRefGoogle Scholar
  2. Blake, J. T., & Donald, J. (2002). Mount Sinai hospital uses integer programming to allocate operating room time. Interfaces, 32, 63–73. CrossRefGoogle Scholar
  3. Burke, E. K., Causmaecker, P., & Vanden Berghe, G. (2004a). Novel metaheuristic approaches to nurse rostering problems in Belgian hospitals. In J. Leung (Ed.), Handbook of scheduling: algorithms, models and performance analysis (Vol. 18, pp. 1–44). Boca Raton: CRC Press. Google Scholar
  4. Burke, E. K., Causmaecker, P., Vanden Berghe, G., & Van Landeghem, H. (2004b). The state of the art of nurse rostering. Journal of Scheduling, 7, 441–499. CrossRefGoogle Scholar
  5. Burke, E. K., Curtois, T., Post, G., Qu, R., & Veltman, B. (2008). A hybrid heuristic ordering and variable neighborhood search for the nurse rostering problem. European Journal of Operational Research, 188(2), 330–334. CrossRefGoogle Scholar
  6. Cardoen, B., Demeulemeester, E., & Beliën, J. (2009a). Optimizing a multiple objective surgical case sequencing problem. International Journal of Production Economics, 119, 354–366. CrossRefGoogle Scholar
  7. Cardoen, B., Demeulemeester, E., & Beliën, J. (2009b). Sequencing surgical cases in a daycare environment: an exact branch-and-price approach. Computers & Operations Research, 36, 2660–2669. CrossRefGoogle Scholar
  8. Chern, C. C., Chien, P. S., & Chen, S. Y. (2008). A heuristic algorithm for the hospital health examination scheduling problem. European Journal of Operational Research, 186(3), 1137–1157. CrossRefGoogle Scholar
  9. Datta, D., Deb, K., & Fonseca, C. M. (2007). Multi-objective evolutionary algorithm for university class timetabling problem. In Evolutionary scheduling (pp. 197–236). CrossRefGoogle Scholar
  10. Deb, K. (2001). Wiley-Interscience series in systems and optimization: Multi-objective optimization using evolutionary algorithms. Chichester: Wiley. Google Scholar
  11. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6, 182–197. CrossRefGoogle Scholar
  12. Ehrgott, M., & Gandibleux, X. (2000). A survey and annotated bibliography of multiobjective combinatorial optimization. OR-Spektrum, 22, 425–460. CrossRefGoogle Scholar
  13. Garey, M. R., & Johnson, D. S. (1990). Computers and intractability: a guide to the theory of NP-completeness. New York: Freeman. Google Scholar
  14. Glover, F. (1998). A template for scatter search and path relinking. In AE ’97: selected papers from the third European conference on artificial evolution (pp. 3–54). London: Springer. Google Scholar
  15. Glover, F., Laguna, M., & Martí, R. (2000). Fundamentals of scatter search and path relinking. Control and Cybernetics, 39(3), 653–684. Google Scholar
  16. Hansen, P., & Mladenović, N. (2001). Variable neighborhood search: principles and applications. European Journal of Operational Research, 130(3), 449–467. CrossRefGoogle Scholar
  17. Knowles, J., Thiele, L., & Zitzler, E. (2006). A tutorial on the performance assessment of stochastic multiobjective optimizers. TIK report 214, Computer Engineering and Networks Laboratory (TIK), ETH, Zurich. Google Scholar
  18. Marcon, E., Kharraja, S., & Simonnet, G. (2003). The operating theatre planning by the follow-up of the risk of no realization. International Journal of Production Economics, 85(1), 83–90. CrossRefGoogle Scholar
  19. Mladenović, N., & Hansen, P. (1997). Variable neighborhood search. Computers & Operations Research, 24(11), 1097–1100. CrossRefGoogle Scholar
  20. Molina, J., Laguna, L., Martí, R., & Caballero, R. (2007). SSPMO: a scatter tabu search procedure for non-linear multiobjective optimization. INFORMS Journal on Computing, 19(1), 91–100. CrossRefGoogle Scholar
  21. Mooney, E. L., & Rardin, R. L. (1993). Tabu search for a class of scheduling problems. Annals of Operations Research, 41(1–4), 253–278. CrossRefGoogle Scholar
  22. Nebro, A. J., Luna, F., & Alba, E. (2005). New ideas in applying scatter search to multiobjective optimization. In Lecture notes in computer science: Vol. 3410. Third international conference on evolutionary MultiCriterion optimization, EMO 2005 (pp. 443–458). Berlin: Springer. Google Scholar
  23. Patterson, P. (1996). What makes a well-oiled scheduling system? OR Manager, 12(9), 19–23. Google Scholar
  24. Gomes da Silva, C., Clímaco, C., & Figueira, J. (2006). A scatter search method for bi-criteria {0,1}-knapsack problems. European Journal of Operational Research, 169, 373–391. CrossRefGoogle Scholar
  25. Tan, Y. Y. (2008). Multi-objective optimization for scheduling elective surgical patients at the health sciences centre in Winnipeg. Master’s thesis. available at. http://hdl.handle.net/1993/3081.
  26. Vlah, S., Lukač, Z., & Pacheco, J. (2011). Use of VNS heuristic for scheduling of patients in hospital. Journal of the Operational Research Society, 62, 1227–1238. CrossRefGoogle Scholar
  27. Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto evolutionary algorithm. IEEE Transactions on Evolutionary Computation, 3(4), 257–271. CrossRefGoogle Scholar
  28. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., & da Fonseca, V. G. (2003). Performance assessment of multiobjective optimizers: an analysis and review. IEEE Transactions on Evolutionary Computation, 7(2), 117–132. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Faculty of Economics and BusinessUniversity of ZagrebZagrebCroatia
  2. 2.CEG-ISTTechnical University of LisbonLisbonPortugal
  3. 3.LORIA LaboratoryNancyFrance

Personalised recommendations