Journal of Scheduling

, Volume 15, Issue 4, pp 457–471 | Cite as

Maximizing the configuration robustness for parallel multi-purpose machines under setup cost constraints

  • Alexis Aubry
  • Mireille Jacomino
  • André Rossi
  • Marie-Laure Espinouse
Article

Abstract

This paper focuses on the configuration of a parallel multi-purpose machines workshop. An admissible configuration must be chosen in order to ensure that a load-balanced production plan meeting the demand exists. Moreover, the demand is strongly subject to uncertainties. That is the reason why the configuration must exhibit robustness properties: the load-balancing performance must be guaranteed with regard to a given range of uncertainties. A branch-and-bound approach has been developed and implemented to determine a cost-constrained configuration that maximizes a robustness level. Computational results are reported for both academic and industrial-scale instances. More than 80% of the academic instances are solved to optimality by the proposed method. Moreover, this method appears to be a good heuristic for industrial-scale instances.

Keywords

Scheduling in uncertain environments Parallel multi-purpose machines Qualification management Setup cost constraints Demand uncertainties Robustness 

References

  1. Allahverdi, A., Gupta, J., & Aldowaisan, T. (1999). A review of scheduling research involving setup considerations. OMEGA—The International Journal of Management Science, 27, 219–239. CrossRefGoogle Scholar
  2. Allahverdi, A., Cheng, T., & Kovalyov, M. (2008). A survey of scheduling problems with setup times or costs. European Journal of Operational Research, 187(3), 985–1032. CrossRefGoogle Scholar
  3. Aubry, A., Rossi, A., Espinouse, M. L., & Jacomino, M. (2008). Minimizing setup costs for parallel multi-purpose machines under load-balancing constraint. European Journal of Operational Research, 187(3), 1115–1125. CrossRefGoogle Scholar
  4. Ben-Tal, A., & Nemirovski, A. (2000). Robust solutions of linear programming problems contaminated with uncertain data. Mathematical Programming, 88, 411–424. CrossRefGoogle Scholar
  5. Bertsimas, D., & Sim, M. (2004). The price of robustness. Operations Research, 54(1), 35–53. CrossRefGoogle Scholar
  6. Billaut, J. C., Moukrim, A., & Sanlaville, E. (2008). Flexibility and robustness in scheduling. London: ISTE Ltd. CrossRefGoogle Scholar
  7. Brucker, P., Jurisch, B., & Krämer, A. (1997). Complexity of scheduling problems with multi-purpose machines. Annals of Operational Research, 70, 57–73. CrossRefGoogle Scholar
  8. Demeulemeester, E., & Herroelen, W. (2007). Introduction to the special issue: project scheduling under uncertainty. Journal of Scheduling, 10(3), 151–152. CrossRefGoogle Scholar
  9. Gurevsky, E., Guschinskaya, O., & Dolgui, A. (2010). Assembly line balancing problems under uncertainties. In 25th mini-Euro conference: uncertainty and robustness in planning and decision making (URPDM2010), Portugal. Google Scholar
  10. Hall, N., & Posner, M. (2004). Sensitivity analysis for scheduling problems. Journal of Scheduling, 7, 49–83. CrossRefGoogle Scholar
  11. Johnzen, C., Dauzere-Peres, S., Vialetelle, P., & Yugma, C. (2007). Importance of qualification management for wafer fabs. In Advanced semiconductor manufacturing conference, ASMC2007, IEEE/SEMI. Google Scholar
  12. Johnzen, C., Dauzère-Pérès, S., Vialetelle, P., & Yugma, C. (2009). Optimizing flexibility and equipment utilization through qualification management. In Advanced semiconductor manufacturing conference, ASMC2009, IEEE/SEMI. Google Scholar
  13. Kouvelis, P., & Yu, G. (1997). Robust discrete optimization and its applications. Dordrecht: Kluwer Academic. Google Scholar
  14. Leung, J. T., & Li, C. L. (2009). Scheduling with processing set restrictions: a survey. International Journal of Production Economics, 116, 251–262. CrossRefGoogle Scholar
  15. Miwa, T., Nishihara, N., & Yamamoto, K. (2005). Automated stepper load balance allocation system. IEEE Transactions on Semiconductor Manufacturing, 18, 510–516. CrossRefGoogle Scholar
  16. Montemanni, R., & Gambardella, L. (2005). The robust shortest path problem with interval data via benders decomposition. 4OR, 3, 315–328. CrossRefGoogle Scholar
  17. Nourine, L., & Raynaud, O. (1999). A fast algorithm for building lattices. Information Processing Letters, 71, 199–204. CrossRefGoogle Scholar
  18. Rossi, A. (2003). Ordonnancement en milieu incertain, mise en œuvre d’une démarche robuste. Ph.D. thesis, Institut National Polytechnique de Grenoble, France. Google Scholar
  19. Rossi, A. (2010). A robustness measure of the configuration of multi-purpose machines. International Journal of Production Research, 48(4), 1013–1033. CrossRefGoogle Scholar
  20. Rossi, A., Jacomino, M., & Espinouse, M. L. (2004). Étude de robustesse: configuration d’un parc de machines partiellement multifonctions. Journal Européen des Systèmes Automatisés, 34, 373–395. CrossRefGoogle Scholar
  21. Roy, B. (2010). Robustness in operational research and decision aiding: a multi-faceted issue. European Journal of Operational Research, 200(3), 629–638. doi: 10.1016/j.ejor.2008.12.036. CrossRefGoogle Scholar
  22. Sotskov, Y., Tanaev, V., & Werner, F. (1998a). Stability radius of an optimal schedule: a survey and recent developments. In Yu, G. (Ed.) Industrial applications of combinatorial optimization (pp. 72–108). Dordrecht: Kluwer Academic. Google Scholar
  23. Sotskov, Y., Wagelmans, A., & Werner, F. (1998b). On the calculation of the stability radius of an optimal or an approximate schedule. Annals of Operations Research, 83, 213–252. CrossRefGoogle Scholar
  24. Taniguchi, F., Yamada, T., & Kataoka, S. (2008). Heuristic and exact algorithms for the max-min optimization of the multi-scenario knapsack problem. Computers and Operations Research, 35, 2034–2048. CrossRefGoogle Scholar
  25. Vincke, P. (1999). Robust solutions and methods in decision-aid. Journal of Multi-Criteria Decision Analysis, 8, 181–187. CrossRefGoogle Scholar
  26. Williams, T. (1999). Recipe management: a matter of efficiency. In Semiconductor fabtech (pp. 47–51). Google Scholar
  27. Zieliński, P. (2004). The computational complexity of the relative robust shortest path problem with interval data. European Journal of Operational Research, 158, 570–576. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Alexis Aubry
    • 1
  • Mireille Jacomino
    • 2
  • André Rossi
    • 3
  • Marie-Laure Espinouse
    • 2
  1. 1.CRAN, Nancy-UniversitéCNRSVandœuvre lès NancyFrance
  2. 2.Grenoble-INP/UJF-Grenoble 1/CNRSG-SCOP UMR5272GrenobleFrance
  3. 3.Lab-STICCUniversité de Bretagne-SudLorient CedexFrance

Personalised recommendations