Journal of Scheduling

, Volume 14, Issue 6, pp 601–615 | Cite as

Tabu search techniques for the heterogeneous vehicle routing problem with time windows and carrier-dependent costs

Article

Abstract

In this work we formalize a new complex variant of the classical vehicle routing problem arising from a real-world application. Our formulation includes a heterogeneous fleet, a multi-day planning horizon, a complex carrier-dependent cost for vehicles, and the possibility of leaving orders unscheduled.

For tackling this problem we propose a metaheuristic approach based on Tabu Search and on a combination of neighborhood relations. We perform an experimental analysis to tune and compare different combinations, highlighting the most important features of the algorithm.

The outcome is that a significant improvement is obtained by a complex combination of neighborhood relations.

In addition, we compare our solver with previous work on public benchmarks of a similar version of the problem, namely the Vehicle Routing Problem with Private fleet and Common carrier. The conclusion is that our results are competitive with the best ones in literature.

Keywords

Vehicle routing Tabu search 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archetti, C., Hertz, A., & Speranza, M. G. (2007). Metaheuristics for the team orienteering problem. Journal of Heuristics, 3, 49–76. CrossRefGoogle Scholar
  2. Baldacci, R., Battara, M., & Vigo, D. (2007) Routing a heterogeneous fleet of vehicles (Technical Report 2007/1). DEIS, University of Bologna. Google Scholar
  3. Birattari, M., Stützle, T., Paquete, L., & Varrentrapp, K. (2002). A racing algorithm for configuring metaheuristics. In W. B. Langdon et al. (Eds.), GECCO 2002: Proceedings of the genetic and evolutionary computation conference (pp. 11–18). New York: Morgan Kaufmann. Google Scholar
  4. Bolduc, M. C., Renaud, J., & Boctor, F. (2007). A heuristic for the routing and carrier selection problem. European Journal of Operational Research, 183(2), 926–932. doi:10.1016/j.ejor.2006.10.013. CrossRefGoogle Scholar
  5. Bolduc, M. C., Renaud, J., Boctor, F., & Laporte, G. (2008). A perturbation metaheuristic for the vehicle routing problem with private fleet and common carriers. Journal of the Operational Research Society, 59, 776–787. CrossRefGoogle Scholar
  6. Bräysy, O., & Gendreau, M. (2005a). Vehicle routing problem with time windows, Part I: route construction and local search algorithms. Transportation Science, 39(1), 104–118. doi:10.1287/trsc.1030.0056. CrossRefGoogle Scholar
  7. Bräysy, O., & Gendreau, M. (2005b). Vehicle routing problem with time windows, Part II: Metaheuristics. Transportation Science, 39(1), 119–139. doi:10.1287/trsc.1030.0057. CrossRefGoogle Scholar
  8. Bräysy, O., Dullaert, W., Hasle, G., Mester, D., & Gendreau, M. (2008). An effective multi-restart deterministic annealing metaheuristic for the fleet size and mix vehicle routing problem with time windows. Transportation Science, 42(3), 371–386. CrossRefGoogle Scholar
  9. Butt, S. E., & Cavalier, T. M. (1994). A heuristic for the multiple tour maximum collection problem. Computers and Operations Research, 21(1), 101–111. CrossRefGoogle Scholar
  10. Chao, I. M., Golden, B. L., & Wasil, EA (1996). The team orienteering problem. European Journal of Operational Research, 88(3), 464–474. CrossRefGoogle Scholar
  11. Choi, E., & Tcha, D. W. (2007). A column generation approach to the heterogeneous fleet vehicle routing problem. Computers and Operations Research, 34(7), 2080–2095. CrossRefGoogle Scholar
  12. Chu, C. W. (2005). A heuristic algorithm for the truckload and less-than-truckload problem. European Journal of Operational Research, 127(3), 657–667. CrossRefGoogle Scholar
  13. Clarke, G., & Wright, J. W. (1964). Scheduling of vehicles from a central depot to a number of delivery points. Operations Research, 12(4), 568–581. CrossRefGoogle Scholar
  14. Côté, J. F., & Potvin, J. Y. (2009). A tabu search heuristic for the vehicle routing problem with private fleet and common carrier. European Journal of Operational Research, 198(2), 464–469. CrossRefGoogle Scholar
  15. Dantzig, G., & Ramser, J. (1959). The truck dispatching problem. Management Science, 6(1), 80–91. CrossRefGoogle Scholar
  16. Dell’Amico, M., Monaci, M., Pagani, C., & Vigo, D. (2006) Heuristic approaches for the fllet size and mix vehicle routing problem with time windows (Tech. rep.). DISMI, University of Modena and Reggio Emilia, Italy. Google Scholar
  17. Di Gaspero, L., & Schaerf, A. (2003). EasyLocal++: An object-oriented framework for flexible design of local search algorithms. Software—Practice and Experience, 33(8), 733–765. CrossRefGoogle Scholar
  18. Di Gaspero, L., & Schaerf, A. (2006). Neighborhood portfolio approach for local search applied to timetabling problems. Journal of Mathematical Modeling and Algorithms, 5(1), 65–89. CrossRefGoogle Scholar
  19. Di Gaspero, L., Roli, A., & Schaerf, A. (2007). EasyAnalyzer: an object-oriented framework for the experimental analysis of stochastic local search algorithms. In T. Stützle, M. Birattari, & H. Hoos (Eds.), Lecture notes in computer science: Vol. 4683. Engineering stochastic local search algorithms (SLS-2007) (pp. 76–90). Berlin: Springer. Google Scholar
  20. Diaby, M., & Ramesh, R. (1995). The distribution problem with carrier service: a dual based approach. ORSA Journal on Computing, 7(1), 24–35. Google Scholar
  21. Gendreau, M., Laporte, G., Musaraganyi, C., & Taillard, ED (1999). A tabu search heuristic for the heterogeneous fleet vehicle routing problem. Computers and Operations Research, 26(12), 1153–1173. CrossRefGoogle Scholar
  22. Glover, F., & Laguna, M. (1997). Tabu search. Dordrecht: Kluwer Academic. CrossRefGoogle Scholar
  23. Hoos, H. H., & Stützle, T. (2005). Stochastic local search—foundations and applications. San Francisco: Morgan Kaufmann. Google Scholar
  24. Hvattum, L. M. (2009). On the value of aspiration criteria in tabu search. In The VIII metaheuristics international conference (MIC 2009), Hamburg, Germany. Google Scholar
  25. Laporte, G. (2009). Fifty years of vehicle routing. Transportation Science, 43(4), 408–416. CrossRefGoogle Scholar
  26. Li, F., Golden, B., & Wasil, E. (2007). A record-to-record travel algorithm for solving the heterogeneous fleet vehicle routing problem. Computers and Operations Research, 34(9), 2734–2742. CrossRefGoogle Scholar
  27. Liu, F. H., & SY, Shen (1999). The fleet size and mix vehicle routing problem with time windows. Journal of the Operational Research Society, 50(7), 721–732. Google Scholar
  28. Marinakis, Y., & Migdalas, A. (2007). Annotated bibliography in vehicle routing. Operational Research, 7(1), 27–46. doi:10.1007/BF02941184. CrossRefGoogle Scholar
  29. Ochi, L. S., Vianna, D. S., Drummond, L. M. A., & Victor, A. O. (1998). A parallel evolutionary algorithm for the vehicle routing problem with heterogeneous fleet. Parallel and Distributed Processing, 1388, 216–224. Google Scholar
  30. Osman, I. H., & Salhi, S. (1996). Local search strategies for the vehicle fleet mix problem. In V. J. Rayward-Smith, I. H. Osman, C. R. Reeves, & G. D. Smith (Eds.), Modern heuristic search methods, Chap. 8 (pp. 131–153). New York: Wiley. CrossRefGoogle Scholar
  31. Renaud, J., & Boctor, F. F. (2002). A sweep-based algorithm for the fleet size and mix vehicle routing problem. European Journal of Operational Research, 140, 618–628. CrossRefGoogle Scholar
  32. Semet, F., & Taillard, E. (1993). Solving real-life vehicle routing problems efficiently using tabu search. Annals of Operations Research, 41, 469–488. CrossRefGoogle Scholar
  33. Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems with time window constraints. Operations Research, 35(2), 254–265. CrossRefGoogle Scholar
  34. Taillard, E. (1999). A heuristic column generation method for the heterogeneous fleet vrp. RAIRO Recherche Opérationnelle, 33(1), 1–14. CrossRefGoogle Scholar
  35. Taillard, ED (1991). Robust taboo search for the quadratic assignment problem. Parallel Computing, 17(4–5), 443–455. CrossRefGoogle Scholar
  36. Tang, H., & Miller-Hooks, E. (2005). A tabu search heuristic for the team orienteering problem. Computers and Operations Research, 32(6), 1379–1407. CrossRefGoogle Scholar
  37. Tarantilis, C. D., Kiranoudis, C. T., & Vassiliadis, V. S. (2003). A list based threshold accepting metaheuristic for the heterogeneous fixed fleet vehicle routing problem. Journal of the Operational Research Society, 54(1), 65–71. CrossRefGoogle Scholar
  38. Tarantilis, C. D., Kiranoudis, C. T., & Vassiliadis, V. S. (2004). A threshold accepting metaheuristic for the heterogeneous fixed fleet vehicle routing problem. European Journal of Operational Research, 152(1), 148–158. CrossRefGoogle Scholar
  39. Toth, P., & Vigo, D. (2001). An overview of vehicle routing problems. In The vehicle routing problem (pp. 1–26). Philadelphia: Society for Industrial and Applied Mathematics. Google Scholar
  40. Toth, P., & Vigo, D. (Eds.) (2002). The vehicle routing problem. Monographs on discrete mathematics and applications. Philadelphia: SIAM. Google Scholar
  41. Venables, W. N., & Ripley, B. D. (2002). Statistics and computing. Modern applied statistics with S (4th ed.). Berlin: Springer. Google Scholar
  42. Volgenant, T., & Jonker, R. (1987). On some generalizations of the travelling-salesman problem. Journal of the Operational Research Society, 38(11), 1073–1079. Google Scholar
  43. Wassan, N. A., & Osman, I. H. (2002). Tabu search variants for the mix fleet vehicle routing problem. Journal of the Operational Research Society, 53(7), 768–782. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Sara Ceschia
    • 1
  • Luca Di Gaspero
    • 1
  • Andrea Schaerf
    • 1
  1. 1.DIEGMUniversity of UdineUdineItaly

Personalised recommendations