Advertisement

Journal of Scheduling

, Volume 15, Issue 3, pp 273–287 | Cite as

A new variable-sized bin packing problem

  • Joan Boyar
  • Lene M. Favrholdt
Article

Abstract

The problem of BLASTing a genome against a database of DNA sequences to identify potential relationships with other genomes can be divided into subproblems quite naturally. We consider a setting where the problem is distributed to PCs having idle time. This results in a new variant of bin packing, where a rectangle is divided into smaller rectangles that are to be packed in variable-sized bins which arrive on-line. A rectangle fits in a bin, if the sum of its height and width is no more than the size of the bin. The goal is to minimize the total size of the bins used for packing the entire rectangle.

Simple algorithms exist that work well on small instances of the problem and in the special case where all processors (bins) have the same capacity. We propose an algorithm Slices that works well for more realistic instances in a scenario where the processors vary significantly and arrive on-line.

Keywords

On-line bin packing Variable-sized bins Bins arriving on-line Parallelization of BLAST jobs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angelopoulos, S., Dorrigiv, R., & López-Ortiz, A. (2007). On the separation and equivalence of paging strategies. In 18th annual ACM-SIAM symposium on discrete algorithms (pp. 229–237). Google Scholar
  2. Ben-David, S., & Borodin, A. (1994). A new measure for the study of on-line algorithms. Algorithmica, 11(1), 73–91. CrossRefGoogle Scholar
  3. Borodin, A., & El-Yaniv, R. (1998). Online computation and competitive analysis. London: Cambridge University Press. Google Scholar
  4. Boyar, J., & Favrholdt, L. M. (2007). The relative worst order ratio for on-line algorithms. ACM Transactions on Algorithms, 3(2), 22. CrossRefGoogle Scholar
  5. Boyar, J., & Favrholdt, L. M. (2010). Scheduling jobs on Grid processors. Algorithmica, 57(4), 819–847. CrossRefGoogle Scholar
  6. Boyar, J., & Medvedev, P. (2008). The relative worst order ratio applied to seat reservation. ACM Transactions on Algorithms, 4(4), 48. CrossRefGoogle Scholar
  7. Boyar, J., Favrholdt, L. M., & Larsen, K. S. (2007a). The relative worst-order ratio applied to paging. Journal of Computer and System Sciences, 73, 818–843. CrossRefGoogle Scholar
  8. Boyar, J., Ehmsen, M. R., & Larsen, K. S. (2007b). Theoretical evidence for the superiority of LRU-2 over LRU for the paging problem. In LNCS: Vol. 4368. Approximation and online algorithms (WAOA 2006) (pp. 95–107). Google Scholar
  9. Darling, A., Carey, L., & Feng, W. (2003). The design, implementation, and evaluation of mpiBLAST. In ClusterWorld conference & Expo and the 4th international conference on Linux cluster: the HPC revolution 2003. Google Scholar
  10. Ehmsen, M. R., Favrholdt, L. M., Kohrt, J. S., & Mihai, R. (2008). Comparing First-Fit and Next-Fit for online edge coloring. In 19th international symposium on algorithms and computation (pp. 89–99). Google Scholar
  11. Epstein, L., Favrholdt, L. M., & Kohrt, J. S. (2006). Separating scheduling algorithms with the relative worst order ratio. Journal of Combinatorial Optimization, 12(4), 362–385. CrossRefGoogle Scholar
  12. Karlin, A. R., Manasse, M. S., Rudolph, L., & Sleator, D. D. (1988). Competitive snoopy caching. Algorithmica, 3(1), 79–119. CrossRefGoogle Scholar
  13. Kenyon, C. (1996). Best-fit bin-packing with random order. In 7th annual ACM-SIAM symposium on discrete algorithms (pp. 359–364). Google Scholar
  14. Rangwala, H., Lantz, E., Musselman, R., Pinnow, K., Smith, B., & Wallenfelt, B. (2005). Massively parallel BLAST for the Blue Gene/L. In High availability and performance computing workshop. Google Scholar
  15. Sleator, D. D., & Tarjan, R. E. (1985). Amortized efficiency of list update and paging rules. Communication of the ACM, 28(2), 202–208. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceUniversity of Southern DenmarkOdense MDenmark

Personalised recommendations