Journal of Scheduling

, Volume 14, Issue 3, pp 225–237 | Cite as

A job-shop problem with one additional resource type

  • Alessandro Agnetis
  • Marta Flamini
  • Gaia Nicosia
  • Andrea Pacifici
Article

Abstract

We consider a job-shop scheduling problem with n jobs and the constraint that at most p<n jobs can be processed simultaneously. This model arises in several manufacturing processes, where each operation has to be assisted by one human operator and there are p (versatile) operators. The problem is binary NP-hard even with n=3 and p=2. When the number of jobs is fixed, we give a pseudopolynomial dynamic programming algorithm and a fully polynomial time approximation scheme (FPTAS). We also propose an enumeration scheme based on a generalized disjunctive graph, and a dynamic programming-based heuristic algorithm. The results of an extensive computational study for the case with n=3 and p=2 are presented.

Keywords

Job shop Scheduling with resource constraints Disjunctive graph Dynamic programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agnetis, A., & Oriolo, G. (1995). The machine duplication problem in a job shop with two jobs. International Transactions on Operational Research, 2(1), 45–60. CrossRefGoogle Scholar
  2. Agnetis, A., Flamini, M., Nicosia, G., & Pacifici, A. (2010). Scheduling three chains on two parallel machines. European Journal of Operational Research, 202(3), 669–674. CrossRefGoogle Scholar
  3. Akers, S. B. (1956). A graphical approach to production scheduling problems. Operations Research, 4, 244–255. CrossRefGoogle Scholar
  4. Baki, M. F., & Vickson, R. G. (2004). One-operator, two-machine open shop and flow shop problems with setup times for machines and weighted number of tardy jobs objective. Optimization Methods and Software, 19(2), 165–178. CrossRefGoogle Scholar
  5. Blazewicz, J., Cellary, W., Slowinski, R., & Weglarz, J. (1986). Scheduling under resource constraints–deterministic models. Annals of Operations Research, 7, 1–359. CrossRefGoogle Scholar
  6. Brucker, P. (1988). An efficient algorithm for the job-shop problem with two jobs. Computing, 40(4), 353–359. CrossRefGoogle Scholar
  7. Brucker, P., Knust, S., & Wang, G. (2005). Complexity results for flow-shop problems with a single server. European Journal of Operational Research, 165, 398–407. CrossRefGoogle Scholar
  8. Brucker, P., & Krämer, A. (1996). Polynomial algorithms for resource-constrained and multiprocessor task scheduling problems. European Journal of Operational Research, 90, 214–226. CrossRefGoogle Scholar
  9. Carlier, J. (1982). The one-machine sequencing problem. European Journal of Operational Research, 11, 42–47. CrossRefGoogle Scholar
  10. Carlier, J., & Pinson, E. (1990). A practical use of Jackson’s preemptive schedule for solving the job shop problem. Annals of Operations Research, 26, 269–287. Google Scholar
  11. Chen, J., & Lee, C.-Y. (1999). General multiprocessor task scheduling. Naval Research Logistics, 46, 57–74. CrossRefGoogle Scholar
  12. Cheng, T. C. E., Wang, G., & Sriskandarajah, C. (1999). One-operator two-machine flowshop scheduling with setup and dismounting times. Computers & Operations Research, 26, 715–730. CrossRefGoogle Scholar
  13. Garey, M. R., & Johnson, D. S. (1979). Computers and intractability. New York: Freeman. Google Scholar
  14. Glass, C. A., Shafransky, Y. M., & Strusevich, V. A. (2000). Scheduling for parallel dedicated machines with a single server. Naval Research Logistics, 47, 304–328. CrossRefGoogle Scholar
  15. Hart, P. E., Nilsson, N. J., & Raphael, B. (1968) A formal basis for he heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, SSC-4, 100–108. CrossRefGoogle Scholar
  16. Ibarra, O. H., & Kim, C. (1975). Fast approximation algorithms for the knapsack and sum of subset problems. Journal of ACM, 22, 463–468. CrossRefGoogle Scholar
  17. Kellerer, H., & Strusevich, V.A. (2003). Scheduling parallel dedicated machines under a single non-shared resource. European Journal of Operations Research, 174, 345–364. CrossRefGoogle Scholar
  18. Kellerer, H., & Strusevich, V. A. (2004). Scheduling problems for parallel dedicated machines under multiple resource constraints. Discrete Applied Mathematics, 133, 45–68. CrossRefGoogle Scholar
  19. Roy, B., & Sussmann, B. (1964). Les problemes d’ordonnancement avec constraintes disjonctives. SEMA, Note D.S., No. 9, Paris. Google Scholar
  20. Sethi, S., Sriskandarajah, C., van de Velde, S., Wang, M. Y., & Hoogeveen, H. (1999). Minimizing makespan in a pallet-constrained flowshop. Journal of Scheduling, 2(3), 115–133. CrossRefGoogle Scholar
  21. Sotskov, Y. N., & Shakhlevich, N. V. (1995). NP-hardness of shop-scheduling problems with three jobs. Discrete Applied Mathematics, 59(3), 237–266. CrossRefGoogle Scholar
  22. Wang, M. Y., Sethi, S. P., Sriskandarajah, C., & van de Velde, S. L. (1997). Minimizing makespan in a flowshop with pallet requirements: computational complexity. INFOR (Information Systems and Operational Research), 35, 277–285. Google Scholar
  23. Warshall, A. (1963). A theorem on Boolean matrices. Journal of the ACM, 9(1), 11–12. CrossRefGoogle Scholar
  24. Wei, V. K. (1981). A lower bound on the stability number of a simple graph. Technical Memorandum No. 81-11217-9. Bell Laboratories. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Alessandro Agnetis
    • 1
  • Marta Flamini
    • 2
  • Gaia Nicosia
    • 3
  • Andrea Pacifici
    • 4
  1. 1.Dipartimento di Ingegneria dell’InformazioneUniversità di SienaSienaItaly
  2. 2.Data Management S.P.A.RomaItaly
  3. 3.Dipartimento di Informatica e AutomazioneUniversità Roma TreRomaItaly
  4. 4.Dipartimento di Ingegneria dell’ImpresaUniversità di Roma Tor VergataRomaItaly

Personalised recommendations