Journal of Scheduling

, Volume 13, Issue 4, pp 347–362 | Cite as

Automatic generation of temporal planning domains for e-learning problems

  • Luis Castillo
  • Lluvia Morales
  • Arturo González-Ferrer
  • Juan Fdez-Olivares
  • Daniel Borrajo
  • Eva Onaindía
Article

Abstract

AI Planning & Scheduling techniques are being widely used to adapt learning paths to the special features and needs of students both in distance learning and lifelong learning environments. However, instructors strongly rely on Planning & Scheduling experts to encode and review the domains for the planner/scheduler to work. This paper presents an approach to automatically extract a fully operational HTN planning domain and problem from a learning objects repository without requiring the intervention of any planning expert, and thus enabling an easier adoption of this technology in practice. The results of a real experiment with a small group of students within an e-Learning private company in Spain are also shown.

Hierarchical task network planning Knowledge engineering for planning and scheduling Applications to e-learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alguacil-Martin, S. (2008). Tailored learning experiences. Andalusian Regional Government Research Portal. www.andaluciainvestiga.com/espanol/noticias/9/6915.asp.
  2. Allen, J. (1983). Maintaining knowledge about temporal intervals. Communications of ACM, 26(1), 832–843. CrossRefGoogle Scholar
  3. ANSI/IEEE (2007). IEEE Standard for Learning Object Metadata. http://ltsc.ieee.org/wg12/.
  4. Bienkowski, M. (1995). Demonstrating the operational feasibility of new technologies: The ARPI IFDs. IEEE Expert, 10(1), 27–33. CrossRefGoogle Scholar
  5. Boticario, J., & Santos, O. (2007). A dynamic assistance approach to support the development and modelling of adaptive learning scenarios based on educational standards. In Fifth international workshop on authoring of adaptive and adaptable hypermedia. International conference on user modelling. Google Scholar
  6. Castillo, L., Fdez-Olivares, J., García-Pérez, O., & Palao, F. (2006). Efficiently handling temporal knowledge in an HTN planner. In Sixteenth international conference on automated planning and scheduling, ICAPS. Google Scholar
  7. Cole, J., & Foster, H. (2007). Using moodle. Sebastopol: O’Reilly. Google Scholar
  8. Dechter, R., Meiri, I., & Pearl, J. (1991). Temporal constraint networks. Artificial Intelligence, 49, 61–95. CrossRefGoogle Scholar
  9. Edelkamp, S., & Hoffmann, J. (2004). The language for the 2004 international planning competition. http://ls5-www.cs.uni-dortmund.de/~edelkamp/ipc-4/pddl.html.
  10. Fdez-Olivares, J., Castillo, L., García-Pérez, O., & Palao, F. (2006). Bringing users and planning technology together. Experiences in SIADEX. In Sixteenth international conference on automated planning and scheduling, ICAPS. Awarded as the Best Application Paper of this edition. Google Scholar
  11. Figueroa-Martínez, J., Morales, L., & Castillo, L. (2008). Extending moodle SCORM module to support basic ims-ld. In MoodleMoot, Spain, 2008. Google Scholar
  12. Garrido, A., Onaindía, E., & Sapena, O. (2008). Planning and scheduling in an e-learning environment. A constraint-programming-based approach. Engineering Applications of Artificial Intelligence, 21(5), 733–743. CrossRefGoogle Scholar
  13. Ghallab, M., Nau, D., & Traverso, P. (2004). Automated planning: theory and practice. San Mateo: Morgan Kaufmann. Google Scholar
  14. Goldman, R. (2006). Durative planning in HTNs. In Proceedings of ICAPS. Google Scholar
  15. González-Ferrer, A., Castillo, L., Fdez-Olivares, J., & Morales, L. (2008). Towards the use of xpdl as planning and scheduling modeling tool: the workflow patterns approach. In Advances in artificial intelligence (IBERAMIA 2008). Berlin: Springer. Google Scholar
  16. Ilias, L. M. S. (2007). ILIAS website. http://www.ilias.de/ios/index-e.html.
  17. IMS-GLC (2007). IMS Global Learning Consortium. http://www.imsglobal.org/.
  18. Koper, R. (2005). An introduction to learning design. In R. Koper & C. Tattersall (Eds.), Learning design: a handbook on modelling and delivering networked education and training (pp. 3–20). Berlin: Springer. Google Scholar
  19. Kuter, U., Nau, D., Reisner, E., & Goldman, R. (2007). Conditionalization: adapting forward-chaining planners to partially observable environments. In ICAPS 2007—workshop on planning and execution for real-world systems. Google Scholar
  20. Long, D., & Fox, M. (2003). PDDL2.1: an extension to PDDL for expressing temporal planning domains. Journal of Artificial Intelligence Research, 20, 61–124. Google Scholar
  21. Luckin, R., Underwood, J., du Boulay, B., Holmberg, J., Kerawalla, L., O’Connor, J., Smith, H., & Tunley, H. (2006). Designing educational systems fit for use: a case study in the application of human centred design for AIED. International Journal of Artificial Intelligence in Education, 16, 353–380. Google Scholar
  22. Morales, L., Castillo, L., Fernández-Olivares, J., & González-Ferrer, A. (2008). Building learning designs by using an automatic planning domain generation: A state-based approach. In European starting AI researcher symposium, STAIRS08. Google Scholar
  23. Muscettola, N., Nayak, P. P., Pell, B., & Williams, B. C. (1998). Remote agent: to boldly go where no AI systems has gone before. Artificial Intelligence, 5–48. Google Scholar
  24. Myers, K. L. (1999). CPEF: A continuous planning and execution framework. AI Magazine, 20(4), 63–69. Google Scholar
  25. Nau, D., Au, T., Ilghami, O., Kuter, U., Murdock, J. W., Wu, D., & Yaman, F. (2003). SHOP2: An HTN planning system. Journal of Artificial Intelligence Research, 20, 379–404. Google Scholar
  26. Petrick, R., & Bacchus, F. (2004). Extending the knowledge-based approach to planning with incomplete information and sensing. In Proceedings of the international conference on automated planning and scheduling (pp. 2–11). Google Scholar
  27. R-Moreno, M., & Camacho, D. (2006). AI techniques for automatic learning design. In International electronic conference on computer science (IeCCS-2006). Google Scholar
  28. Sicilia, M. A., Sánchez-Alonso, S., & García-Barriocanal, E. (2006). On supporting the process of learning design through planners. In F. J. García et al. (Eds.), Virtual campus 2006 selected and extended papers (pp. 81–89). Google Scholar
  29. Toro, S. T., Castillo, L., Morales, L., Jiménez-Galera, M., Llorca-Díez, M., & Carrillo, J. O. (2008). Customizing learning routes in moodle based on Honey–Alonso learning styles. In MoodleMoot, Spain, 2008. Google Scholar
  30. Ullrich, C. (2005). Course generation based on HTN planning. In Proceedings of 13th annual workshop of the SIG adaptivity and user modeling in interactive systems (pp. 74–79). Google Scholar
  31. Wilkins, D. E., & des Jardins, M. (2001). A call for knowledge-based planning. AI Magazine, 22(1), 99–115. Google Scholar
  32. Wilkins, D. E., & Desimone, R. V. (1994). Applying an AI planner to military operations planning. In M. Zweben & M. S. Fox (Eds.), Intelligent scheduling. San Mateo: Morgan Kaufmann. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Luis Castillo
    • 1
  • Lluvia Morales
    • 1
  • Arturo González-Ferrer
    • 2
  • Juan Fdez-Olivares
    • 1
  • Daniel Borrajo
    • 3
  • Eva Onaindía
    • 4
  1. 1.Departamento de Ciencias de la Computación e I.A., ETSI Informática y TelecomunicacionesUniversidad de GranadaGranadaSpain
  2. 2.Center for Virtual Teaching, E-Learning CenterUniversity of GranadaGranadaSpain
  3. 3.Departamento de InformáticaUniversidad Carlos III de MadridLeganésSpain
  4. 4.Departamento de Sistemas Informáticos y ComputaciónUniversidad Politécnica de ValenciaValenciaSpain

Personalised recommendations