Advertisement

Journal of Scheduling

, Volume 13, Issue 2, pp 143–161 | Cite as

A random generator of resource-constrained multi-project network problems

  • Tyson R. Browning
  • Ali A. Yassine
Article

Abstract

Many scheduling problems in project management, manufacturing, and elsewhere require the generation of activity networks to test proposed solution methods. Single-network generators have been used for the resource-constrained project scheduling problem (RCPSP). Since the first single-network generator was proposed in 1993, several advances have been reported in the literature. However, these generators create only one network or project at a time; they cannot generate multi-project problems to desired specifications. This paper presents the first multi-network problem generator. It is especially useful for investigating the resource-constrained multi-project scheduling problem (RCMPSP), where a controlled set of multi-project test problems is crucial for analyzing the performance of solution methods. In addition to the single-project characteristics handled by existing network generators—such as activity duration, resource types and usage, and network size, shape, and complexity—the proposed generator produces multi-project portfolios with controlled resource distributions and amounts of resource contention. To enable the generation of projects with desired levels of network complexity, we also develop several theoretical insights on the effects of network topology on the probability of successful network generation. Finally, we generate 12,320 test problems for a full-factorial experiment and use analysis of means to conclude that the generator produces “near-strongly random” problems. Fully “strongly random” problems require much greater computational expense.

Keywords

Project scheduling Multi-project scheduling Resource constraints Random network generator Network complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, M. K., Elmaghraby, S. E., & Herroelen, W. S. (1996). DAGEN: a generator of testsets for project activity nets. European Journal of Operational Research, 90(2), 376–382. CrossRefGoogle Scholar
  2. Alvarez-Valdés, R., & Tamarit, J. M. (1989). Heuristic algorithms for resource-constrained project scheduling: a review and an empirical analysis. In R. Slowinski & J. Weglarz (Eds.), Advances in project scheduling (pp. 113–134). New York: Elsevier. Google Scholar
  3. Bein, W. W., Kamburowski, J., & Stallmann, M. F. M. (1992). Optimal reduction of two-terminal directed acyclic graphs. SIAM Journal on Computing, 21(6), 1112–1129. CrossRefGoogle Scholar
  4. Browning, T. R., & Yassine, A. A. (2009). Resource-constrained multi-project scheduling: priority rule performance revisited. TCU Neeley School of Business, Working Paper. Google Scholar
  5. Dar-El, E. M. (1973). MALB—a heuristic technique for balancing large single-model assembly lines. AIIE Transactions, 5(4), 343–356. Google Scholar
  6. Davis, E. W. (1975). Project network summary measures and constrained resource scheduling. IIE Transactions, 7(2), 132–142. CrossRefGoogle Scholar
  7. Davis, E. W., & Patterson, J. H. (1975). A comparison of heuristic and optimum solutions in resource-constrained project scheduling. Management Science, 21(8), 944–955. CrossRefGoogle Scholar
  8. De Reyck, B., & Herroelen, W. (1996). On the use of the complexity index as a measure of complexity in activity networks. European Journal of Operational Research, 91(2), 347–366. CrossRefGoogle Scholar
  9. Demeulemeester, E., Dodin, B., & Herroelen, W. (1993). A random activity network generator. Operations Research, 41(5), 972–980. CrossRefGoogle Scholar
  10. Demeulemeester, E., & Herroelen, W. (1992). A branch-and-bound procedure for the multiple resource-constrained project scheduling problem. Management Science, 38(12), 1803–1818. CrossRefGoogle Scholar
  11. Demeulemeester, E., Vanhoucke, M., & Herroelen, W. (2003). A random network generator for activity-on-the-node networks. Journal of Scheduling, 6(1), 13–34. CrossRefGoogle Scholar
  12. Elmaghraby, S. E. (1977). Activity networks: project planning and control by network models. New York: Wiley. Google Scholar
  13. Elmaghraby, S. E., & Herroelen, W. S. (1980). On the measurement of complexity in activity networks. European Journal of Operational Research, 5(4), 223–234. CrossRefGoogle Scholar
  14. Gutiérrez, M., Durán, A., Alegre, D., & Sastrón, F. (2004). Hiergen: a computer tool for the generation of activity-on-the-node hierarchical project networks. In Proceedings of the computational science and its applications—ICCSA, Part III, Assisi, Italy (pp. 857–866). Google Scholar
  15. Haberle, K., Burke, R., & Graves, R. (2000). A note on measuring parallelism in concurrent engineering. International Journal of Production Research, 38(8), 1947–1952. CrossRefGoogle Scholar
  16. Hartmann, S., & Kolisch, R. (2000). Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem. European Journal of Operational Research, 127(2), 394–407. CrossRefGoogle Scholar
  17. Johnson, T. J. R. (1967). An algorithm for the resource-constrained project scheduling problem. PhD thesis, MIT. Google Scholar
  18. Kaimann, R. A. (1974). Coefficient of network complexity. Management Science, 21(2), 172–177. CrossRefGoogle Scholar
  19. Kaimann, R. A. (1975). Coefficient of network complexity: erratum. Management Science, 21(10), 1211–1212. Google Scholar
  20. Kao, E. P. C., & Queranne, M. (1982). On dynamic programming methods for assembly line balancing. Operations Research, 30(22), 375–390. CrossRefGoogle Scholar
  21. Kolisch, R., Sprecher, A., & Drexl, A. (1992). Characterization and generation of a general class of resource-constrained project scheduling problems. Kiel, Germany. Google Scholar
  22. Kolisch, R., Sprecher, A., & Drexl, A. (1995). Characterization and generation of a general class of resource-constrained project scheduling problems. Management Science, 41(10), 1693–1703. CrossRefGoogle Scholar
  23. Kurtulus, I., & Davis, E. W. (1982). Multi-project scheduling: categorization of heuristic rules performance. Management Science, 28(2), 161–172. CrossRefGoogle Scholar
  24. Kurtulus, I. S., & Narula, S. C. (1985). Multi-project scheduling: analysis of project performance. IIE Transactions, 17(1), 58–65. CrossRefGoogle Scholar
  25. Liberatore, M. J., & Pollack-Johnson, B. (2003). Factors influencing the usage and selection of project management software. IEEE Transactions on Engineering Management, 50(2), 164–174. CrossRefGoogle Scholar
  26. Lova, A., & Tormos, P. (2001). Analysis of scheduling schemes and heuristic rules performance in resource-constrained multi-project scheduling. Annals of Operations Research, 102(1–4), 263–286. CrossRefGoogle Scholar
  27. Maroto, C., Tormos, P., & Lova, A. (1999). The evolution of software quality in project scheduling. In J. Weglarz (Ed.), Project scheduling: recent models, algorithms and applications (pp. 239–259). Boston: Kluwer Academic. Google Scholar
  28. Mastor, A. A. (1970). An experimental and comparative evaluation of production line balancing techniques. Management Science, 16(22), 728–746. CrossRefGoogle Scholar
  29. Pascoe, T. L. (1966). Allocation of resources—CPM. Revue Française de Recherche Opérationelle, 38, 31–38. Google Scholar
  30. Patterson, J. H. (1976). Project scheduling: the effects of problem structure on heuristic performance. Naval Research Logistics, 23(1), 95–123. CrossRefGoogle Scholar
  31. Patterson, J. H. (1984). A comparison of exact approaches for solving the multiple constrained resource, project scheduling problem. Management Science, 30(7), 854–867. CrossRefGoogle Scholar
  32. Payne, J. H. (1995). Management of multiple simultaneous projects: a state-of-the-art review. International Journal of Project Management, 13(3), 163–168. CrossRefGoogle Scholar
  33. Schwindt, C. (1995). A new problem generator for different resource-constrained project scheduling problems with minimal and maximal time lags. Institut für Wirtschaftstheorie und Operations Research, Universität Karlsruhe, WIOR-Report-449. Google Scholar
  34. Schwindt, C. (1996). Generation of resource-constrained project scheduling problems with minimal and maximal time lags. Institut für Wirtschaftstheorie und Operations Research, Universität Karlsruhe, Report WIOR-Report-489. Google Scholar
  35. Schwindt, C. (1998). Generation of resource-constrained project scheduling problems subject to temporal constraints. Institut für Wirtschaftstheorie und Operations Research, Universität Karlsruhe, Report WIOR-543. Google Scholar
  36. Tavares, L. V. (1998). Advanced models for project management. Boston: Kluwer Academic. Google Scholar
  37. Tavares, L. V., Ferreira, J. A., & Coelho, J. S. (1999). The risk of delay of a project in terms of the morphology of its network. European Journal of Operational Research, 119(2), 510–537. CrossRefGoogle Scholar
  38. Temperley, H. M. (1976). Graph theory and applications. Chichester: Ellis Horwood. Google Scholar
  39. Thesen, A. (1977). Measures of the restrictiveness of project networks. Networks, 7, 193–208. CrossRefGoogle Scholar
  40. Vanhoucke, M., Coelho, J., Debels, D., & Tavares, L. V. (2004). On the morphological structure of a network. Vlerick Leuven Gent Management School, Working Paper no. 2004/9. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Neeley School of BusinessTexas Christian UniversityFort WorthUSA
  2. 2.Department of Industrial & Enterprise Systems Engineering (IESE)University of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations