Advertisement

Journal of Scheduling

, Volume 15, Issue 1, pp 13–21 | Cite as

Comparing online algorithms for bin packing problems

  • Leah Epstein
  • Lene M. Favrholdt
  • Jens S. Kohrt
Article

Abstract

The relative worst-order ratio is a measure of the quality of online algorithms. In contrast to the competitive ratio, this measure compares two online algorithms directly instead of using an intermediate comparison with an optimal offline algorithm.

In this paper, we apply the relative worst-order ratio to online algorithms for several common variants of the bin packing problem. We mainly consider pairs of algorithms that are not distinguished by the competitive ratio and show that the relative worst-order ratio prefers the intuitively better algorithm of each pair.

Keywords

Online algorithms Relative worst-order ratio Bin packing Bin covering Bin coloring Class-constrained bin packing Open-end bin packing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Assman, S. F., Johnson, D. S., Kleitman, D. J., & Leung, J. Y.-T. (1984). On a dual version of the one-dimensional bin packing problem. Journal of Algorithms, 5(4), 502–525. CrossRefGoogle Scholar
  2. Ben-David, S., & Borodin, A. (1994). A new measure for the study of on-line algorithms. Algorithmica, 11(1), 73–91. CrossRefGoogle Scholar
  3. Boyar, J., Ehmsen, M. R., & Larsen, K. S. (2006). Theoretical evidence for the superiority of LRU-2 over LRU for the paging problem. In Approximation and online algorithms (pp. 95–107). Google Scholar
  4. Boyar, J., & Favrholdt, L. M. (2007). The relative worst order ratio for online algorithms. ACM Transactions on Algorithms, 3(2), 22. CrossRefGoogle Scholar
  5. Boyar, J., Favrholdt, L. M., & Larsen, K. S. (2007). The relative worst order ratio applied to paging. Journal of Computer and System Sciences, 73(5), 818–843. CrossRefGoogle Scholar
  6. Boyar, J., & Medvedev, P. (2008). The relative worst order ratio applied to seat reservation. ACM Transactions on Algorithms, 4(4). Article 48, 22 pp. Google Scholar
  7. Coffman, E. G., Jr., & Csirik, J. (2007). Performance guarantees for one-dimensional bin packing. In T. F. Gonzalez (Ed.), Handbook of approximation algorithms and metaheuristics. London: Chapman & Hall. Chap. 32, 18 pp. Google Scholar
  8. Csirik, J., Frenk, J. B. G., Labbé, M., & Zhang, S. (1999). Two simple algorithms for bincovering. Acta Cybernetica, 14(1), 13–25. Google Scholar
  9. Csirik, J., & Leung, J. Y.-T. (2007a). Variable-sized bin packing and bin covering. In T. F. Gonzalez (Ed.), Handbook of approximation algorithms and metaheuristics. London: Chapman & Hall. Chap. 34, 11 pp. Google Scholar
  10. Csirik, J., & Leung, J. Y.-T. (2007b). Variants of classical one-dimensional bin packing. In T. F. Gonzalez (Ed.), Handbook of approximation algorithms and metaheuristics. London: Chapman & Hall. Chap. 33, 13 pp. Google Scholar
  11. Csirik, J., & Totik, V. (1988). On-line algorithms for a dual version of bin packing. Discrete Applied Mathematics, 21, 163–167. CrossRefGoogle Scholar
  12. Ehmsen, M. R., Favrholdt, L. M., Kohrt, J. S., & Mihai, R. (2008). Comparing First-Fit and Next-Fit for online edge coloring. In 19th international symposium on algorithms and computation (pp. 89–99). Google Scholar
  13. Epstein, L., Favrholdt, L. M., & Kohrt, J. S. (2006). Separating online scheduling algorithms with the relative worst order ratio. Journal of Combinatorial Optimization, 12(4), 362–385. CrossRefGoogle Scholar
  14. Graham, R. L. (1966). Bounds for certain multiprocessing anomalies. Bell Systems Technical Journal, 45, 1563–1581. Google Scholar
  15. Hiller, B., & Vredeveld, T. (2008). Probabilistic analysis of online bin coloring algorithms via stochastic comparison. In Proceedings of the 16th annual European symposium (pp. 528–539). Google Scholar
  16. Johnson, D. S. (1974). Fast algorithms for bin packing. Journal of Computer and System Sciences, 8(3), 272–314. CrossRefGoogle Scholar
  17. Johnson, D. S., Demers, A., Ullman, J. D., Garey, M. R., & Graham, R. L. (1974). Worst-case performance bounds for simple one-dimensional packing algorithms. SIAM Journal on Computing, 3(4), 299–325. CrossRefGoogle Scholar
  18. Karlin, A. R., Manasse, M. S., Rudolph, L., & Sleator, D. D. (1988). Competitive snoopy caching. Algorithmica, 3(1), 79–119. CrossRefGoogle Scholar
  19. Kenyon, C. (1996). Best-fit bin-packing with random order. In Proceedings of the 7th annual ACM-SIAM symposium on discrete algorithms (pp. 359–364). Google Scholar
  20. Krumke, S. O., de Paepe, W. E., Rambau, J., & Stougie, L. (2008). Bincoloring. Theoretical Computer Science, 407(1–3), 231–241. CrossRefGoogle Scholar
  21. Lee, C. C., & Lee, D. T. (1985). A simple online bin packing algorithm. Journal of the ACM, 32(3), 562–572. CrossRefGoogle Scholar
  22. Shachnai, H., & Tamir, T. (2004). Tight bounds for online class-constrained packing. Theoretical Computer Science, 321, 103–123. CrossRefGoogle Scholar
  23. Xavier, E. C., & Miyazawa, F. K. (2008). The class constrained bin packing problem with applications to video-on-demand. Theoretical Computer Science, 393(1–3), 240–259. CrossRefGoogle Scholar
  24. Yang, J., & Leung, J. Y.-T. (2003). The ordered open-end bin packing problem. Operations Research, 51(5), 759–770. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Leah Epstein
    • 1
  • Lene M. Favrholdt
    • 2
  • Jens S. Kohrt
    • 2
  1. 1.Department of MathematicsUniversity of HaifaHaifaIsrael
  2. 2.Department of Mathematics and Computer ScienceUniversity of Southern DenmarkOdenseDenmark

Personalised recommendations