Journal of Scheduling

, Volume 12, Issue 5, pp 461–474 | Cite as

Bounded-space online bin cover

Article

Abstract

In this paper, we look at the online bounded-space bin cover problem and show how we can use the language of Markov chains to model and analyze the problem. We will use the insights given by the Markov chains to design an algorithm for the online bounded-space bin cover problem. The algorithm is a heuristic that we create by simplifying the Markov chain. We also show how we can use simple methods to improve the efficiency of the algorithm. Finally, we will analyze our algorithm and compare it to a well known online bin cover algorithm.

Keywords

Bin cover Bounded-space Online Markov chains 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asgeirsson, E. I., & Stein, C. (2006). Using Markov chains to design algorithms for on-line bounded-space bin-cover. In Proceedings of the ACM-SIAM workshop on algorithm engineering and experiments (pp. 75–85). Google Scholar
  2. Assman, A. B., Johnson, D. J., Kleitman, D. J., & Leung, J. Y.-T. (1984). On a dual version of the one-dimensional bin packing problem. Journal of Algorithms, 5, 502–525. CrossRefGoogle Scholar
  3. Coffman, E. G. Jr., & Lueker, G. S. (1991). An introduction to the probabilistic analysis of packing and partitioning algorithms. New York: Wiley. Google Scholar
  4. Coffman, E. G. Jr., Johnson, D. S., Shor, P. W., & Weber, R. R. (1993). Markov chains, computer proofs, and average-case analysis of best fit bin packing. In STOC ’93: Proceedings of the twenty-fifth annual ACM symposium on theory of computing (pp. 412–421). Google Scholar
  5. Coffman, E. G. Jr., Courcoubetis, C., Garey, M. R., Johnson, D. S., Shor, P. W., Weber, R. R., & Yannakakis, M. (2002). Perfect packing theorems and the average case behavior of optimal and on-line packings. SIAM Review, 44, 384–402. CrossRefGoogle Scholar
  6. Courcoubetis, C., & Weber, R. R. (1990). Stability of on-line bin packing with random arrivals and long-run average constraints. Probability in the Engineering and Informational Sciences, 4, 447–460. CrossRefGoogle Scholar
  7. Csirik, J., & Totik, V. (1988). Online algorithms for a dual version of bin packing. Discrete Applied Mathematics, 21(2), 163–167. CrossRefGoogle Scholar
  8. Csirik, J., Frenk, J. B. G., Galambos, G., & Rinooy Kan, A. H. G. (1991). Probabilistic analysis of algorithms for dual bin packing problems. Journal of Algorithms, 12(2), 189–203. CrossRefGoogle Scholar
  9. Csirik, J., Johnson, D. S., Kenyon, C., Shor, P. W., & Weber, R. R. (1999). A self organizing bin packing heuristic. In Proceedings of the workshop on algorithmic engineering and experimentation (ALENEX ’99) (pp. 246–265). Google Scholar
  10. Csirik, J., Johnson, D. S., Kenyon, C., Orlin, J. B., Shor, P. W., & Weber, R. R. (2000). On the sum-of-squares algorithm for bin packing. In Proceedings of the 32nd annual ACM symposium on theory of computing (pp. 208–217). Google Scholar
  11. Csirik, J., Johnson, D., & Kenyon, C. (2001). Better approximation algorithms for bin covering. In Proceedings of the 12th ACM-SIAM symposium on discrete algorithms (pp. 557–566). Google Scholar
  12. de la Vega, W. F., & Lueker, G. S. (1981). Bin packing can be solved within 1+ε in linear time. Combinatorica, 1(4), 349–355. CrossRefGoogle Scholar
  13. Jensson, P., Jonsson, M. T., & Runarsson, T. P. (1996). Dynamic dual bin packing using fuzzy objectives. In Proceedings of 1996 IEEE international conference on evolutionary computation (ICEC ’96) (pp. 219–222). Google Scholar
  14. Karmarkar, N., & Karp, R. (1982). An efficient approximation scheme for the one-dimensional bin-packing problem. In Proceedings of the 23rd annual symposium on foundations of computer science (pp. 312–320). Google Scholar
  15. Ross, S. M. (2000). Introduction to probability models. San Diego: Academic Press. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Reykjavik UniversityReykjavikIceland
  2. 2.Department of IEORColumbia UniversityNew YorkUSA

Personalised recommendations