Journal of Scheduling

, Volume 12, Issue 2, pp 199–224 | Cite as

Scheduling with conflicts: online and offline algorithms

  • Guy Even
  • Magnús M. Halldórsson
  • Lotem Kaplan
  • Dana Ron


We consider the following problem of scheduling with conflicts (swc): Find a minimum makespan schedule on identical machines where conflicting jobs cannot be scheduled concurrently. We study the problem when conflicts between jobs are modeled by general graphs.

Our first main positive result is an exact algorithm for two machines and job sizes in {1,2}. For jobs sizes in {1,2,3}, we can obtain a \(\frac{4}{3}\) -approximation, which improves on the \(\frac{3}{2}\) -approximation that was previously known for this case. Our main negative result is that for jobs sizes in {1,2,3,4}, the problem is APX-hard.

Our second contribution is the initiation of the study of an online model for swc, where we present the first results in this model. Specifically, we prove a lower bound of \(2-\frac{1}{m}\) on the competitive ratio of any deterministic online algorithm for m machines and unit jobs, and an upper bound of 2 when the algorithm is not restricted computationally. For three machines we can show that an efficient greedy algorithm achieves this bound. For two machines we present a more complex algorithm that achieves a competitive ratio of \(2-\frac{1}{7}\) when the number of jobs is known in advance to the algorithm.


Scheduling with conflicts Mutual exclusion scheduling Approximation algorithms Online algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alon, N. (1983). A note on the decomposition of graphs into isomorphic matchings. Acta Mathematica Hungarica, 42, 221–223. CrossRefGoogle Scholar
  2. Baker, B. S., & Coffman, Jr., E. G. (1996). Mutual exclusion scheduling. Theoretical Computer Science, 162(2), 225–243. CrossRefGoogle Scholar
  3. Bar-Noy, A., Halldórsson, M. M., Kortsarz, G., Salman, R., & Shachnai, H. (2000). Sum multicoloring of graphs. Journal of Algorithms, 37, 422–450. CrossRefGoogle Scholar
  4. Bodlaender, H. L., & Jansen, K. (1993). On the complexity of scheduling incompatible jobs with unit-times. In MFCS’93: Proceedings of the 18th international symposium on mathematical foundations of computer science (pp. 291–300). London, UK, 1993. Berlin: Springer. Google Scholar
  5. Bodlaender, H. L., & Jansen, K. (1995). Restrictions of graph partition problems. Part I. Theoretical Computer Science, 148, 93–109. CrossRefGoogle Scholar
  6. Bodlaender, H. L., Jansen, K., & Woeginger, G. J. (1994). Scheduling with incompatible jobs. Discrete Applied Mathematics, 55, 219–232. CrossRefGoogle Scholar
  7. Buchsbaum, A. L., Karloff, H., Kenyon, C., Reingold, N., & Thorup, M. (2004). OPT versus LOAD in dynamic storage allocation. SIAM Journal on Computing, 33, 632–646. CrossRefGoogle Scholar
  8. Coffman, Jr. E. G., Garey, M. R., Johnson, D. S., & LaPaugh, A. S. (1985). Scheduling file transfers. SIAM Journal on Computing, 14(3), 744–780. CrossRefGoogle Scholar
  9. Downey, R. G., & Fellows, M. R. (1995). Fixed-parameter tractability and completeness i: Basic results. SIAM Journal on Computing, 24(4), 873–921. CrossRefGoogle Scholar
  10. Duh, R., & Fürer, M. (1997). Approximation of k-set cover by semi-local optimization. In Proceedings of the twenty-ninth annual ACM symposium on the theory of computing (pp. 256–264). Google Scholar
  11. Drozdowski, M. (1996). Scheduling multiprocessor tasks—an overview. European Journal of Operational Research, 94, 167–191. CrossRefGoogle Scholar
  12. Epstein, L., & Levin, A. (2006). On bin packing with conflicts. In Proceedings of the 4th workshop on approximation and online algorithms (WAOA) (pp. 160–173). Google Scholar
  13. Feige, U., & Kilian, J. (1998). Zero knowledge and the chromatic number. JCSS, 57, 187–199. Google Scholar
  14. Garey, M. R., & Graham, R. L. (1975). Bounds for multiprocessor scheduling with resource constraints. SIAM Journal on Computing, 4, 187–200. CrossRefGoogle Scholar
  15. Garey, M. R., & Johnson, D. S. (1975). Complexity results for multiprocessor scheduling under resource constraints. SIAM Journal on Computing, 4, 397–411. CrossRefGoogle Scholar
  16. Garey, M. R., & Johnson, D. S. (1979). Computers and intractability. New York: Freeman. Google Scholar
  17. Hansen, P., Hertz, A., & Kuplinsky, J. (1993). Bounded vertex colorings of graphs. Discrete Mathematics, 111(1–3), 305–312. CrossRefGoogle Scholar
  18. Halldórsson, M. M., Kortsarz, G., Proskurowski, A., Salman, R., Shachnai, H., & Telle, J. A. (2003). Multicoloring trees. Information and Computation, 180(2), 113–129. CrossRefGoogle Scholar
  19. Irani, S., & Leung, V. (2003). Scheduling with conflicts on bipartite and interval graphs. Journal of Scheduling, 6(3), 287–307. CrossRefGoogle Scholar
  20. Jansen, K. (1999). An approximation scheme for bin packing with conflicts. Journal of Combinatorial Optimization, 3(4), 363–377. CrossRefGoogle Scholar
  21. Jansen, K. (2003). The mutual exclusion scheduling problem for permutation and comparability graphs. Information and Computation, 180(2), 71–81. CrossRefGoogle Scholar
  22. Jansen, K., & Porkolab, L. (2002). Polynomial time approximation schemes for general multiprocessor job shop scheduling. Journal of Algorithms, 45, 167–191. CrossRefGoogle Scholar
  23. Kaplan, L. (2007). Scheduling with conflicts. Master’s thesis, Tel-Aviv University. Google Scholar
  24. Kaller, D., Gupta, A., & Shermer, T. (1995). The χ t coloring problem. In Lecture notes in computer sciences : Vol. 900. Symposium on theoretical aspects of computer science, STACS 95. Berlin: Springer. Google Scholar
  25. Lonc, Z. (1992). On complexity of some chain and antichain partition problems. In WG’91: Proceedings of the 17th international workshop (pp. 97–104). London, UK, 1992. Berlin: Springer. Google Scholar
  26. Petrank, E. (1994). The hardness of approximation: Gap location. Computational Complexity, 4, 133–157. CrossRefGoogle Scholar
  27. Shmoys, D. B., Wein, J., & Williamson, D. P. (1995). Scheduling parallel machines on-line. SIAM Journal on Computing, 24(6), 1313–1331. CrossRefGoogle Scholar
  28. Zuckerman, D. (2006). Linear degree extractors and the inapproximability of max clique and chromatic number. In Proceedings of the thirty-sixth annual ACM symposium on the theory of computing (pp. 681–690). Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Guy Even
    • 1
  • Magnús M. Halldórsson
    • 2
  • Lotem Kaplan
    • 1
  • Dana Ron
    • 1
  1. 1.School of Electrical EngineeringTel-Aviv Univ.Tel-AvivIsrael
  2. 2.Dept. of Computer Science, Faculty of EngineeringUniversity of IcelandReykjavíkIceland

Personalised recommendations