Advertisement

Journal of Scheduling

, 12:121 | Cite as

A multi-objective evolutionary algorithm for examination timetabling

  • C. Y. Cheong
  • K. C. Tan
  • B. Veeravalli
Article

Abstract

This paper considers the scheduling of exams for a set of university courses. The solution to this exam timetabling problem involves the optimization of complete timetables such that there are as few occurrences of students having to take exams in consecutive periods as possible but at the same time minimizing the timetable length and satisfying hard constraints such as seating capacity and no overlapping exams. To solve such a multi-objective combinatorial optimization problem, this paper presents a multi-objective evolutionary algorithm that uses a variable-length chromosome representation and incorporates a micro-genetic algorithm and a hill-climber for local exploitation and a goal-based Pareto ranking scheme for assigning the relative strength of solutions. It also imports several features from the research on the graph coloring problem. The proposed algorithm is shown to be a more general exam timetabling problem solver in that it does not require any prior information of the timetable length to be effective. It is also tested against a few influential and recent optimization techniques and is found to be superior on four out of seven publicly available datasets.

Keywords

Exam timetabling problem Evolutionary algorithms Multi-objective optimization Combinatorial problems 

References

  1. Abdullah, S., Ahmadi, S., Burke, E. K., & Dror, M. (2007a). Investigating Ahuja–Orlin’s large neighbourhood search approach for examination timetabling. OR Spectrum, 29(2), 351–372. CrossRefGoogle Scholar
  2. Abdullah, S., Ahmadi, S., Burke, E. K., Dror, M., & McCollum, B. (2007b). A tabu-based large neighbourhood search methodology for the capacitated examination timetabling problem. Journal of the Operational Research Society, 58, 1494–1502. CrossRefGoogle Scholar
  3. Ahmadi, S., Barrone, R., Cheng, P., Cowling, P., & McCollum, B. (2003). Perturbation based variable neighbourhood search in heuristic space for examination timetabling problem. In Proceedings of multidisciplinary international scheduling: theory and applications, MISTA 2003, Nottingham, UK (pp. 155–171). Google Scholar
  4. Ahuja, R. K., Orlin, J. B., & Sharma, D. (2001). Multiexchange neighbourhood search algorithm for capacitated minimum spanning tree problem. Mathematical Programming, 91, 71–97. Google Scholar
  5. Asmuni, H., Burke, E. K., Garibaldi, J. M., & McCollum, B. (2005). Fuzzy multiple heuristic orderings for examination timetabling. In E. K. Burke & M. Trick (Eds.), Lecture notes in computer science: Vol. 3616. Proceedings of the 5th international conference on the practice and theory of automated timetabling, PATAT 2004, Pittsburg, PA, USA (pp. 334–353). Berlin: Springer. CrossRefGoogle Scholar
  6. Asmuni, H., Burke, E. K., Garibaldi, J. M., & McCollum, B. (2007). A novel fuzzy approach to evaluate the quality of examination timetabling. In E. K. Burke & H. Rudová (Eds.), Lecture notes in computer science: Vol. 3867. Proceedings of the 6th international conference on the practice and theory of automated timetabling, PATAT 2006, Brno, Czech Republic (pp. 327–346). Berlin: Springer. CrossRefGoogle Scholar
  7. Balakrishnan, N., Lucena, A., & Wong, R. T. (1992). Scheduling examinations to reduce second order conflicts. Computers and Operations Research, 19, 353–361. CrossRefGoogle Scholar
  8. Bardadym, V. A. (1996). Computer-aided school and university timetabling: The new wave. In E. K. Burke & P. Ross (Eds.), Lecture notes in computer science: Vol. 1153. Proceedings of the 1st international conference on the practice and theory of automated timetabling, PATAT 1995, Edinburgh, Scotland (pp. 22–45). Berlin: Springer. Google Scholar
  9. Bilgin, B., Özcan, E., & Korkmaz, E. E. (2007). An experimental study on hyper-heuristics and exam timetabling. In E. K. Burke & H. Rudová (Eds.), Lecture notes in computer science: Vol. 3867. Proceedings of the 6th international conference on the practice and theory of automated timetabling, PATAT 2006, Brno, Czech Republic (pp. 394–412). Berlin: Springer. CrossRefGoogle Scholar
  10. Brailsford, S. C., Potts, C. N., & Smith, B. M. (1999). Constraint satisfaction problems: algorithms and applications. European Journal of Operational Research, 119, 557–581. CrossRefGoogle Scholar
  11. Brelaz, D. (1979). New methods to color the vertices of a graph. Communication of the ACM, 22(4), 251–256. CrossRefGoogle Scholar
  12. Broder, S. (1964). Final examination scheduling. Communications of the ACM, 7, 494–498. CrossRefGoogle Scholar
  13. Bullnheimer, B. (1998). An examination scheduling model to maximize students study time. In E. K. Burke & M. W. Carter (Eds.), Lecture notes in computer science: Vol. 1408. Proceedings of the 2nd international conference on the practice and theory of automated timetabling, PATAT 1997, Toronto, Canada (pp. 78–91). Berlin: Springer. CrossRefGoogle Scholar
  14. Burke, E. K., Elliman, D. G., Ford, P. H., & Weare, R. F. (1995). Specialised recombinative operators for the timetabling problem. In T. Fogarty (Ed.), Lecture notes in computer science: Vol. 993. Evolutionary Computing: AISB Workshop, Sheffield, UK (pp. 75–85). Berlin: Springer. Google Scholar
  15. Burke, E. K., Newall, J. P., & Weare, R. F. (1996a). A memetic algorithm for university exam timetabling. In E. K. Burke & P. Ross (Eds.), Lecture notes in computer science: Vol. 1153. Proceedings of the 1st international conference on the practice and theory of automated timetabling, PATAT 1995, Edinburgh, Scotland (pp. 241–250). Berlin: Springer. Google Scholar
  16. Burke, E. K., Elliman, D. G., Ford, P. H., & Weare, R. F. (1996b). Examination timetabling in British universities—a survey. In E. K. Burke & P. Ross (Eds.), Lecture notes in computer science: Vol. 1153. Proceedings of the 1st international conference on the practice and theory of automated timetabling, PATAT 1995, Edinburgh, Scotland (pp. 76–90). Berlin: Springer. Google Scholar
  17. Burke, E. K., Jackson, K., Kingston, J. H., & Weare, R. (1997). Automated university timetabling: the state of the art. The Computer Journal, 40(9), 565–571. CrossRefGoogle Scholar
  18. Burke, E. K., Newall, J. P., & Weare, R. F. (1998a). A simple heuristically guided search for the timetable problem. In E. Alpaydin & C. Fyte (Eds.), Proceedings of the international ICSC symposium on engineering of intelligent systems, EIS 1998, Spain (pp. 574–579). Google Scholar
  19. Burke, E. K., Newall, J. P., & Weare, R. F. (1998b). Initialization strategies and diversity in evolutionary timetabling. Evolutionary Computation, 6(1), 81–103. CrossRefGoogle Scholar
  20. Burke, E. K., & Newall, J. P. (1999). A multistage evolutionary algorithm for the timetable problem. IEEE Transactions on Evolutionary Computation, 3(1), 63–74. CrossRefGoogle Scholar
  21. Burke, E. K., Bykov, Y., & Petrovic, S. (2001). A multicriteria approach to examination timetabling. In E. K. Burke & W. Erben (Eds.), Lecture notes in computer science: Vol. 2079. Proceedings of the 3rd international conference on the practice and theory of automated timetabling, PATAT 2000, Konstanz, Germany (pp. 118–131). Berlin: Springer. CrossRefGoogle Scholar
  22. Burke, E. K., & Petrovic, S. (2002). Recent research directions in automated timetabling. European Journal of Operational Research, 140(2), 266–280. CrossRefGoogle Scholar
  23. Burke, E. K., Petrovic, S., & Qu, R. (2002). Case-based heuristic selection for examination timetabling. In Proceedings of the 4th Asia-Pacific conference on simulated evolution and learning, SEAL 2002, Singapore (pp. 277–281). Google Scholar
  24. Burke, E. K., & Newall, J. P. (2003). Enhancing timetable solutions with local search methods. In E. K. Burke & P. De Causmaecker (Eds.), Lecture notes in computer science: Vol. 2740. Proceedings of the 4th international conference on the practice and theory of automated timetabling, PATAT 2002, Gent, Belgium (pp. 195–206). Berlin: Springer. Google Scholar
  25. Burke, E. K., & Newall, J. P. (2004). Solving examination timetabling problems through adaptation of heuristic orderings. Annals of Operational Research, 129, 107–134. CrossRefGoogle Scholar
  26. Burke, E. K., & Landa Silva, J. D. (2004). The design of memetic algorithms for scheduling and timetabling problems. In W.E. Hart, N. Krasnogor, & J. E. Smith (Eds.), Studies in fuzziness and soft computing: Vol. 166. Recent Advances in Memetic Algorithms and Related Search Technologies (pp. 289–312). New York: Springer. CrossRefGoogle Scholar
  27. Burke, E. K., Kingston, J., & de Werra, D. (2004a). Applications to timetabling. In J. Gross & J. Yellen (Eds.), Handbook of graph theory (pp. 445–474). London: Chapman Hall. Google Scholar
  28. Burke, E. K., Bykov, Y., Newall, J. P., & Petrovic, S. (2004b). A time-predefined local search approach to exam timetabling problems. IIE Transactions, 36(6), 509–528. CrossRefGoogle Scholar
  29. Burke, E. K., Dror, M., Petrovic, S., & Qu, R. (2005). Hybrid graph heuristics in hyper-heuristics applied to exam timetabling problems. In B. L. Golden, S. Raghavan, & E. A. Wasil (Eds.), The next wave in computing, optimization, and decision technologies (pp. 79–91). New York: Springer. CrossRefGoogle Scholar
  30. Burke, E. K., Eckersley, A. J., McCollum, B., Petrovic, S., & Qu, R. (2006a). Hybrid variable neighbourhood approaches to university exam timetabling (Technical Report NOTTCS-TR-2006-2). School of CSiT, University of Nottingham. Google Scholar
  31. Burke, E. K., Petrovic, S., & Qu, R. (2006b). Case-based heuristic selection for timetabling problems. Journal of Scheduling, 9, 115–132. CrossRefGoogle Scholar
  32. Burke, E. K., McCollum, B., Meisels, A., Petrovic, S., & Qu, R. (2007). A graph-based hyper-heuristic for educational timetabling problems. European Journal of Operational Research, 176, 177–192. CrossRefGoogle Scholar
  33. Caramia, M., Dell’Olmo, P., & Italiano, G. F. (2001). New algorithms for examination timetabling. In S. Näher & D. Wagner (Eds.), Lecture notes in computer science: Vol. 1982. Algorithm Engineering 4th International Workshop, WAE 2000, Saarbrücken, Germany (pp. 230–241). Berlin: Springer. Google Scholar
  34. Carter, M. W. (1986). A survey of practical applications of examination timetabling algorithms. Operations Research, 34(2), 193–202. CrossRefGoogle Scholar
  35. Carter, M. W., & Laporte, G. (1996). Recent developments in practical examination timetabling. In E. K. Burke & P. Ross (Eds.), Lecture notes in computer science: Vol. 1153. Proceedings of the 1st international conference on the practice and theory of automated timetabling, PATAT 1995, Edinburgh, Scotland (pp. 3–21). Berlin: Springer. Google Scholar
  36. Carter, M. W., Laporte, G., & Lee, S. Y. (1996). Examination timetabling: algorithmic strategies and applications. The Journal of the Operational Research Society, 47(3), pp. 373–383. CrossRefGoogle Scholar
  37. Carter, M. W., & Johnson, D. G. (2001). Extended partition initialization in examination timetabling. The Journal of the Operational Research Society, 52, 538–544. CrossRefGoogle Scholar
  38. Casey, S., & Thompson, J. (2003). GRASPing the examination scheduling problem. In E. K. Burke & P. De Causmaecker (Eds.), Lecture notes in computer science: Vol. 2740. Proceedings of the 4th international conference on the practice and theory of automated timetabling, PATAT 2002, Gent, Belgium (pp. 232–244). Berlin: Springer. Google Scholar
  39. Chan, C. K., Gooi, H. B., & Lim, M. H. (2002). Co-evolutionary algorithm approach to a university timetable system. In Proceedings of the 2002 congress on evolutionary computation, CEC 2002, Honolulu, HI, USA (Vol. 2, pp. 1946–1951). Google Scholar
  40. Cheong, C. Y., Tan, K. C., & Veeravalli, B. (2007). Solving the exam timetabling problem via a multi-objective evolutionary algorithm—a more general approach. In Proceedings of the 2007 IEEE symposium on computational intelligence in scheduling, CI-Sched 2007, Honolulu, HI, USA (pp. 165–172). Google Scholar
  41. Coello Coello, C. A., & Pulido, G. T. (2001). Multiobjective optimization using a micro-genetic algorithm. In L. Spector, E. Goodman, A. Wu, W. B. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, & E. K. Burke (Eds.), Proceedings of the genetic and evolutionary computation conference, GECCO 2001, San Francisco, CA, USA (pp. 274–282). San Mateo: Morgan Kaufmann. Google Scholar
  42. Côté, P., Wong, T., & Sabourin, R. (2005). Application of a hybrid multi-objective evolutionary algorithm to the uncapacitated exam proximity problem. In E. K. Burke & M. Trick (Eds.), Lecture notes in computer science: Vol. 3616. Proceedings of the 5th international conference on the practice and theory of automated timetabling, PATAT 2004, Pittsburg, PA, USA (pp. 151–168). Berlin: Springer. CrossRefGoogle Scholar
  43. David, P. (1998). A constraint-based approach for examination timetabling using local repair techniques. In E. K. Burke & M. W. Carter (Eds.), Lecture notes in computer science: Vol. 1408. Proceedings of the 2nd international conference on the practice and theory of automated timetabling, PATAT 1997, Toronto, Canada (pp. 169–186). Berlin: Springer. CrossRefGoogle Scholar
  44. de Werra, D. (1985). An introduction to timetabling. European Journal of Operational Research, 19, 151–162. CrossRefGoogle Scholar
  45. Di Gaspero, L., & Schaerf, A. (2001). Tabu search techniques for examination timetabling. In E. K. Burke & W. Erben (Eds.), Lecture notes in computer science: Vol. 2079. Proceedings of the 3rd international conference on the practice and theory of automated timetabling, PATAT 2000, Konstanz, Germany (pp. 104–117). Berlin: Springer. CrossRefGoogle Scholar
  46. Dowsland, K. A. (1996). Simulated annealing solutions for multi-objective scheduling and timetabling. In V. R. J. Smith, I. H. Osman, C. R.J. Reeves, & G. D. Smith (Eds.), Modern heuristic search methods (pp. 155–166). New York: Wiley. Google Scholar
  47. Dowsland, K. A., & Thompson, J. (2005). Ant colony optimization for the examination scheduling problem. The Journal of Operational Research Society, 56, 426–438. CrossRefGoogle Scholar
  48. Dozier, G., Brown, J., & Bahler, D. (1994). Solving small and large scale constraint satisfaction problems using a heuristic-based microgenetic algorithm. In Proceedings of the 1st IEEE international conference on evolutionary computation, Piscataway, NJ, USA (Vol. 1, pp. 306–311). Google Scholar
  49. Duong, T. A., & Lam, K. H. (2004). Combining constraint programming and simulated annealing on university exam timetabling. In Proceedings of the 2nd international conference in computer sciences, research, innovation & vision for the future, RIVF 2004, Hanoi, Vietnam (pp. 205–210). Google Scholar
  50. Eley, M. (2007). Ant algorithms for the exam timetabling problem. In E. K. Burke & H. Rudová (Eds.), Lecture notes in computer science: Vol. 3867. Proceedings of the 6th international conference on the practice and theory of automated timetabling, PATAT 2006, Brno, Czech Republic (pp. 364–382). Berlin: Springer. CrossRefGoogle Scholar
  51. Erben, W. (2001). A grouping genetic algorithm for graph colouring and exam timetabling. In E. K. Burke & W. Erben (Eds.), Lecture notes in computer science: Vol. 2079. Proceedings of the 3rd international conference on the practice and theory of automated timetabling, PATAT 2000, Konstanz, Germany (pp. 132–156). Berlin: Springer. CrossRefGoogle Scholar
  52. Erben, W., & Song, P. Y. (2005). A hybrid grouping genetic algorithm for examination timetabling. In E. K. Burke & M. Trick (Eds.), Lecture notes in computer science: Vol. 3616. Proceedings of the 5th international conference on the practice and theory of automated timetabling, PATAT 2004, Pittsburg, PA, USA (pp. 487–490). Berlin: Springer. Google Scholar
  53. Fonseca, C. M. (1995). Multiobjective genetic algorithms with application to control engineering problems. Ph.D. thesis, Dept. Automatic Control and Systems Eng., University of Sheffield, Sheffield, UK. Google Scholar
  54. Gani, T. A., Khader, A. T., & Budiarto, R. (2004). Optimizing examination timetabling using a hybrid evolution strategies. In Proceedings of the 2nd international conference on autonomous robots and agents, Palmerston North, New Zealand (pp. 345–349). Google Scholar
  55. Gendreau, M., Hertz, A., & Laporte, G. (1994). A tabu search heuristic for the vehicle routing problem. Management Science, 40, 1276–1290. CrossRefGoogle Scholar
  56. Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. Reading: Addison-Wesley. Google Scholar
  57. Hansen, P., & Mladenovic, N. (2001). Variable neighbourhood search: principles and applications. European Journal of Operational Research, 130, 449–467. CrossRefGoogle Scholar
  58. Hentenryck, P. V. (1989). Constraint satisfaction in logic programming. Logic programming series. Cambridge: MIT Press. Google Scholar
  59. Hussin, N. (2005). Tabu search based hyper-heuristic approaches for examination timetabling. Ph.D. thesis, Department of Computer Science, University of Nottingham. Google Scholar
  60. Kazarlis, S. A., Papadakis, S. E., Theocharis, J. B., & Petridis, V. (2001). Microgenetic algorithms as generalized hill-climbing operators for GA optimization. IEEE Transactions on Evolutionary Computation, 5(3), 204–217. CrossRefGoogle Scholar
  61. Kendall, G., & Hussin, N. M. (2003). An Investigation of a tabu search based hyperheuristic for examination timetabling. In Proceedings of multidisciplinary international scheduling: theory and applications, MISTA 2003, Nottingham, UK (pp. 309–328). Google Scholar
  62. Kendall, G., & Hussin, N. M. (2005). A tabu search hyper-heuristic approach to the examination timetabling problem at the MARA university of technology. In E. K. Burke & M. Trick (Eds.), Lecture notes in computer science: Vol. 3616. Proceedings of the 5th international conference on the practice and theory of automated timetabling, PATAT 2004, Pittsburg, PA, USA (pp. 199–218). Berlin: Springer. CrossRefGoogle Scholar
  63. Lotfi, V., & Cerveny, R. (1991). A final exam-scheduling package. The Journal of the Operational Research Society, 42(3), 205–216. CrossRefGoogle Scholar
  64. Merlot, L. T. G., Boland N., Hughes, B. D., & Stuckey, P. J. (2003). A hybrid algorithm for the examination timetabling problem. In E. K. Burke & P. De Causmaecker (Eds.), Lecture notes in computer science: Vol. 2740. Proceedings of the 4th international conference on the practice and theory of automated timetabling, PATAT 2002, Gent, Belgium (pp. 207–231). Berlin: Springer. Google Scholar
  65. Mladenovic, N., & Hansen, P. (1997). Variable neighbourhood search. Computers and Operations Research, 24(11), 1097–1100. CrossRefGoogle Scholar
  66. Moscato, P., & Norman, M. G. (1991). A ‘memetic’ approach for the travelling salesman problem—implementation of computational ecology for combinatorial optimisation on message-passing systems. In Proceedings of the international conference on parallel computing and transputer applications. Amsterdam: IOS Press. Google Scholar
  67. Naji Azimi, Z. (2004). Comparison of metaheuristic algorithms for examination timetabling problem. Applied Mathematics and Computation, 16, 337–354. CrossRefGoogle Scholar
  68. Naji Azimi, Z. (2005). Hybrid heuristics for examination timetabling problem. Applied Mathematics and Computation, 163, 705–733. CrossRefGoogle Scholar
  69. Paquete, L. F., & Fonseca, C. M. (2001). A study of examination timetabling with multiobjective evolutionary algorithms. In Proceedings of the 4th metaheuristics international conference, MIC 2001, Porto, Portugal (pp. 149–153). Google Scholar
  70. Paquete, L. F., & Stützle, T. (2003). Empirical analysis of tabu search for the lexicographic optimization of the examination timetabling problem. In E. K. Burke & P. De Causmaecker (Eds.), Lecture notes in computer science: Vol. 2740. Proceedings of the 4th international conference on the practice and theory of automated timetabling, PATAT 2002, Gent, Belgium (pp. 413–420). Berlin: Springer. Google Scholar
  71. Petrovic, S., & Bykov, Y. (2003). A multiobjective optimisation technique for exam timetabling based on trajectories. In E. K. Burke & P. De Causmaecker (Eds.), Lecture notes in computer science: Vol. 2740. Proceedings of the 4th international conference on the practice and theory of automated timetabling, PATAT 2002, Gent, Belgium (pp. 179–192). Berlin: Springer. Google Scholar
  72. Petrovic, S., & Burke, E. K. (2004). University timetabling. In J. Leung (Ed.), Handbook of scheduling: algorithms, models, and performance analysis (Chap. 45). London: Chapman & Hall. Google Scholar
  73. Pulido, G. T., & Coello Coello, C. A. (2003). The micro genetic algorithm 2: Towards online adaptation in evolutionary multiobjective optimization. In C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb, & L. Thiele (Eds.), Lecture notes in computer science: Vol. 2632. 2nd international conference on evolutionary multi-criterion optimization, EMO 2003, Faro, Portugal (pp. 252–266). Berlin: Springer. CrossRefGoogle Scholar
  74. Qu, R., & Burke, E. K. (2005). Analysing high level heuristics within a graph-based hyper heuristic for exam timetabling problems (Technical Report NOTTCS-TR-2005-3). School of CSiT, University of Nottingham. Google Scholar
  75. Qu, R., & Burke, E. K. (to appear). Hybridisations within a graph based hyper-heuristic framework for university timetabling problems. Journal of the Operational Research Society. Google Scholar
  76. Qu, R., Burke, E. K., McCollum, B., Merlot, L. T. G., & Lee, S. Y. (to appear). A survey of search methodologies and automated system development for examination timetabling. Journal of Scheduling. Google Scholar
  77. Radcliffe, N. J., & Surry, P. D. (1994). Formal memetic algorithms. In T. Fogarty (Ed.), Lecture notes in computer science: Vol. 865. Evolutionary computing: AISB workshop, Leeds, UK (pp. 1–16). Berlin: Springer. Google Scholar
  78. Ross, P., Corne, D., & Fang, H.-L. (1994). Improving evolutionary timetabling with delta evaluation and directed mutation. In Y. Davidor, H.-P. Schwefel, & R. Manner (Eds.), Parallel problem solving in nature (Vol. III). Berlin: Springer. Google Scholar
  79. Ross, P., Corne, D., & Terashima-Marin, H. (1996). The phase transition niche for evolutionary algorithms in timetabling. In E. K. Burke & P. Ross (Eds.), Lecture notes in computer science: Vol. 1153. Proceedings of the 1st international conference on the practice and theory of automated timetabling, PATAT 1995, Edinburgh, Scotland (pp. 309–324). Berlin: Springer. Google Scholar
  80. Ross, P., Hart, E., & Corne, D. (1998). Some observations about GA-based exam timetabling. In E. K. Burke & M. W. Carter (Eds.), Lecture notes in computer science: Vol. 1408. Proceedings of the 2nd international conference on the practice and theory of automated timetabling, PATAT 1997, Toronto, Canada (pp. 115–129). Berlin: Springer. CrossRefGoogle Scholar
  81. Ross, P., Hart, E., & Corne, D. (2003). Genetic algorithms and timetabling. In: A. Ghosh & S. Tsutsui (Eds.), Advances in evolutionary computing: theory and applications (pp. 755–771). New York: Springer. Google Scholar
  82. Ross, P., Marin-Blazquez, J. G., & Hart, E. (2004). Hyper-heuristics applied to class and exam timetabling problems. In Proceedings of the 2004 congress on evolutionary computation, CEC 2004, Portland, OR, USA (Vol. 2, pp. 1691–1698). Google Scholar
  83. Schaerf, A. (1999). A survey of automated timetabling. Artificial Intelligence Review, 13(2), 87–127). CrossRefGoogle Scholar
  84. Sheibani, K. (2003). An evolutionary approach for the examination timetabling problems. In E. K. Burke & P. De Causmaecker (Eds.), Lecture notes in computer science: Vol. 2740. Proceedings of the 4th international conference on the practice and theory of automated timetabling, PATAT 2002, Gent, Belgium (pp. 387–396). Berlin: Springer. Google Scholar
  85. Tan, K. C., Khor, E. F., Lee, T. H., & Sathikannan, R. (2004). An evolutionary algorithm with advanced goal and priority specification for multi-objective optimization. Journal of Artificial Intelligence Research, 18, 183–215. Google Scholar
  86. Tan, K. C., Cheong, C. Y., & Goh, C. K. (2007). Solving multiobjective vehicle routing problem with stochastic demand via evolutionary computation. European Journal of Operational Research, 177, 813–839. CrossRefGoogle Scholar
  87. Terashima-Marin, H., Ross, P., & Valenzuela-Rendon, M. (1999a). Clique-based crossover for solving the timetabling problem with GAs. In Proceedings of the 1999 congress on evolutionary computation, CEC 1999, Washington, DC, USA (pp. 1200–1206). Google Scholar
  88. Terashima-Marin, H., Ross, P., & Valenzuela-Rendon, M. (1999b). Application of the hardness theory when solving the timetabling problem with GAs. In Proceedings of the 1999 congress on evolutionary computation, CEC 1999, Washington, DC, USA (pp. 604–611). Google Scholar
  89. Terashima-Marin, H., Ross, P., & Valenzuela-Rendon, M. (1999c). Evolution of constraint satisfaction strategies in examination timetabling. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, & R. E. Smith (Eds.), Proceedings of the genetic and evolutionary computation conference, GECCO 1999, Orlando, Florida, USA (pp. 635–642). San Mateo: Morgan Kaufmann. Google Scholar
  90. Thompson, J., & Dowsland, K. (1996a). General cooling schedules for a simulated annealing timetabling system. In E. K. Burke & P. Ross (Eds.), Lecture notes in computer science: Vol. 1153. Proceedings of the 1st international conference on the practice and theory of automated timetabling, PATAT 1995, Edinburgh, Scotland (pp. 345–363). Berlin: Springer. Google Scholar
  91. Thompson, J., & Dowsland, K. (1996b). Variants of simulated annealing for the examination timetabling problem. Annals of Operations Research, 63, 105–128. CrossRefGoogle Scholar
  92. Thompson, J., & Dowsland, K. (1998). A robust simulated annealing based examination timetabling system. Computers and Operations Research, 25, 637–648. CrossRefGoogle Scholar
  93. White, G. M., & Chan, P. W. (1979). Towards the construction of optimal examination timetables. INFOR, 17, 219–229. Google Scholar
  94. White, G. M., & Xie, B. S. (2001). Examination timetables and tabu search with longer-term memory. In E. K. Burke & W. Erben (Eds.), Lecture notes in computer science: Vol. 2079. Proceedings of the 3rd international conference on the practice and theory of automated timetabling, PATAT 2000, Konstanz, Germany (pp. 85–103). Berlin: Springer. CrossRefGoogle Scholar
  95. White, G. M., Xie, B. S., & Zonjic, S. (2004). Using tabu search with longer-term memory and relaxation to create examination timetables. European Journal of Operational Research, 153(16), 80–91. CrossRefGoogle Scholar
  96. Wolpert, D. H., & Macready, W. G. (1995). No free lunch theorems for search (Technical Report SFI-TR-95-02-010). Santa Fe Institute, Santa Fe, NM. Google Scholar
  97. Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82. CrossRefGoogle Scholar
  98. Wong, T., Côté, P., & Sabourin, R. (2004). A hybrid MOEA for the capacitated exam proximity problem. In Proceedings of the 2004 congress on evolutionary computation, CEC 2004, Portland, OR, USA (Vol. 2, pp. 1495–1501). Google Scholar
  99. Wood, D. C. (1968). A system for computing university examination timetables. The Computer Journal, 11(1), 41–47. CrossRefGoogle Scholar
  100. Yang, Y., & Petrovic, S. (2005). A novel similarity measure for heuristic selection in examination timetabling. In E. K. Burke & M. Trick (Eds.), Lecture notes in computer science: Vol. 3616. Proceedings of the 5th international conference on the practice and theory of automated timetabling, PATAT 2004, Pittsburg, PA, USA (pp. 377–396). Berlin: Springer. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations