Journal of Scheduling

, Volume 11, Issue 1, pp 75–83 | Cite as

Preemptive open shop scheduling with multiprocessors: polynomial cases and applications

  • Dominique de Werra
  • Tamás KisEmail author
  • Wieslaw Kubiak


This paper addresses a multiprocessor generalization of the preemptive open-shop scheduling problem. The set of processors is partitioned into two groups and the operations of the jobs may require either single processors in either group or simultaneously all processors from the same group. We consider two variants depending on whether preemptions are allowed at any fractional time points or only at integer time points. We reduce the former problem to solving a linear program in strongly polynomial time, while a restricted version of the second problem is solved by rounding techniques. Applications to course scheduling and hypergraph edge coloring are also discussed.


Preemptive open shop scheduling Multiprocessor operations Polynomial time algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asratian, A. S., & de Werra, D. (2002). A generalized class-teacher model for some timetabling problems. European Journal of Operational Research, 143, 531–542. CrossRefGoogle Scholar
  2. Berge, C. (1973). Graphs and hypergraphs. Amsterdam: North-Holland. Google Scholar
  3. Błażewicz, J., Drabowski, M., & Weglarz, J. (1986). Scheduling multiprocessor tasks to minimize schedule length. IEEE Transactions on Computers, 35(5), 389–393. CrossRefGoogle Scholar
  4. Błażewicz, J., Dell’Olmo, P., Drozdowski, M., & Speranza, M. G. (1992). Scheduling multiprocessor tasks on three dedicated processors. Information Processing Letters, 41, 275–280. CrossRefGoogle Scholar
  5. Błażewicz, J., Ecker, K. H., Pesch, E., Schmidt, G., & Weglarz, J. (1996). Scheduling computer and manufacturing processes. Berlin: Springer. Google Scholar
  6. Brucker, P., & Krämer, A. (1995). Shop scheduling problems with multiprocessor tasks on dedicated processors. Annals of Operations Research, 57, 13–27. CrossRefGoogle Scholar
  7. Brucker, P., & Krämer, A. (1996). Polynomial algorithms for resource-constrained and multiprocessor task scheduling problems. European Journal of Operational Research, 90, 214–226. CrossRefGoogle Scholar
  8. Burke, E. K., Kingston, J. H., & De Werra, D. (2004). In J. Gross & J. Yellen (Eds.), Handbook of graph theory, Applications to timetabling (pp. 445–474). London/Boca Raton: Chapman Hall/CRC Press. Google Scholar
  9. de Werra, D. (1985). An introduction to timetabling. European Journal of Operational Research, 19, 151–162. CrossRefGoogle Scholar
  10. de Werra, D., & Kis, T. (2001). Some solvable cases of preemptive open shop scheduling with multiprocessors. ORWP 01/07, Department of Mathematics, Lausanne: Swiss Federal Institute of Technology. Google Scholar
  11. de Werra, D., Asratian, A. S., & Durand, S. (2002). Complexity of some special types of timetabling problems. Journal of Scheduling, 5, 171–183. CrossRefGoogle Scholar
  12. Drozdowski, M. (1996). Scheduling multiprocessor tasks—an overview. European Journal of Operational Research, 94(2), 215–230. CrossRefGoogle Scholar
  13. Du, J., & Leung, J. Y.-T. (1989). Complexity of scheduling parallel task systems. SIAM Journal on Discrete Mathematics, 2(4), 473–487. CrossRefGoogle Scholar
  14. Gabow, H. N., & Kariv, O. (1982). Algorithms for edge coloring bipartite graphs and multigraphs. SIAM Journal on Computing, 11(1), 117–129. CrossRefGoogle Scholar
  15. Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: a guide to the theory of NP-completeness. San Francisco: Freeman. Google Scholar
  16. Gonzalez, T., & Sahni, S. (1976). Open shop scheduling to minimize finish time. Journal of the ACM, 23(4), 665–679. CrossRefGoogle Scholar
  17. Hoogeveen, J. A., van de Velde, S. L., & Veltman, B. (1994). Complexity of scheduling multiprocessor tasks with prespecified processor allocations. Discrete Applied Mathematics, 55, 259–272. CrossRefGoogle Scholar
  18. Jansen, K., & Porkolab, L. (2004). Preemptive scheduling with dedicated processors: applications of fractional graph coloring. Journal of Scheduling, 7(1), 35–48. CrossRefGoogle Scholar
  19. Kubale, M. (1996). Preemptive versus nonpreemptive scheduling of biprocessor tasks on dedicated processors. European Journal of Operational Research, 94(2), 242–251. CrossRefGoogle Scholar
  20. Petrovic, S., & Burke, E. K. (2004). In J. Leung (Ed.), Handbook of scheduling: algorithms, models, and performance analysis. University timetabling. Boca Raton: CRC Press, Chapter 45. Google Scholar
  21. Tardos, É. (1986). A strongly polynomial algorithm to solve combinatorial linear programs. Operations Research, 34, 362–370. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Dominique de Werra
    • 1
  • Tamás Kis
    • 2
    Email author
  • Wieslaw Kubiak
    • 3
  1. 1.Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.Computer and Automation InstituteBudapestHungary
  3. 3.Faculty of Business AdministrationMemorial UniversitySt. John’sCanada

Personalised recommendations