Journal of Scheduling

, 11:3 | Cite as

A GRASP approach for the extended car sequencing problem

  • Joaquín Bautista
  • Jordi Pereira
  • Belarmino Adenso-Díaz
Article

Abstract

This paper presents a solution procedure for a new variant of the Car Sequencing Problem (CSP) based on the GRASP metaheuristic. In this variant, called xCSP (extended CSP), the aim is to satisfy the hard constraints of the CSP while scheduling the maximum possible number of cars with specific options at specific times of the day in order to satisfy other production requirements. Additional constraint ratios are likewise considered that force at least a minimum specific number of consecutive options. An extension of the CSP is formalized in this paper and computational results are presented using available on-line instances that verify the good performance of a GRASP procedure defined for the xCSP.

Keywords

Car sequencing problem GRASP Metaheuristics MILP Scheduling 

References

  1. Bautista, J. (1993). Procedimientos heurísticos y exactos para la secuenciación en sistemas productivos de unidades homogéneas (contexto JIT). Unpublished Doctoral Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain. Google Scholar
  2. Bautista, J., Pereira, J., & Adenso-Diaz, B. (2008, to appear). A beam search approach for the optimization version of the car sequencing problem. Annals of Operations Research. Google Scholar
  3. Boysen, N., Fliedner, M., & Scholl, A. (2007). Sequencing mixed-model assembly lines: survey, classification and model critique. Jena Research Papers in Business and Economics, 02/2007. Google Scholar
  4. Dincbas, M., Simonis, H., & van Hentenryck, P. (1988). Solving the car sequencing problem in constraint logic programming. In Proceedings of the 8th European conference on artificial intelligence, ECAI-88 (pp. 290–295), Munich. London: Pitmann. Google Scholar
  5. Feo, T. A., & Resende, M. G. C. (1989). Greedy randomized heuristic for a computationally difficult set covering problem. Operations Research Letters, 8, 67–71. CrossRefGoogle Scholar
  6. Gent, I. (1998). Two results on car-sequencing problems (Technical report APES-02-1998). Google Scholar
  7. Gent, I. P., & Walsh, T. (1999). CSPLib: a benchmark library for constraints (Technical report APES-09-1999). Google Scholar
  8. Gottlieb, J., Puchta, M., & Solnon, C. (2003). A study of greedy, local search and ant colony optimization approaches for car sequencing problems. In G. R. Raidl et al. (Eds.), Lecture notes in computer science : Vol. 2611. Applications of evolutionary computing (pp. 246–257). Berlin: Springer. CrossRefGoogle Scholar
  9. Kis, T. (2004). On the complexity of the car sequencing problem. Operations Research Letters, 32, 331–335. CrossRefGoogle Scholar
  10. Laguna, M., & Martí, R. (1999). Grasp and path relinking for 2-layer straight line crossing minimization. INFORMS Journal on Computing, 11, 44–52. CrossRefGoogle Scholar
  11. Little, J. (1993). A searching technique! OR Insight, 6(4), 24–31. CrossRefGoogle Scholar
  12. Monden, Y. (1983). Toyota production system. Norcross: Institute of Industrial Engineers Press. Google Scholar
  13. Parello, B. D., Kabat, W. C., & Wos, L. (1986). Job-shop scheduling using automated reasoning. Journal of Automated Reasoning, 2(1), 1–42. CrossRefGoogle Scholar
  14. Prais, M., & Ribeiro, C. C. (2000). Reactive GRASP: an application to a matrix decomposition problem in TDMA traffic assignment. INFORMS Journal on Computing, 12, 164–176. CrossRefGoogle Scholar
  15. Perron, L., Shaw, P., & Furnon, V. (2004). Propagation guided large neighborhood search. In Lecture notes in computer science (Vol. 3528, pp. 468–481). Berlin: Springer. Google Scholar
  16. Putcha, M., & Gottlieb, J. (2002). Solving car sequencing problems by local optimization. In Lecture notes in computer science : Vol. 2279. EvoWorkshops (pp. 132–142). Berlin: Springer. Google Scholar
  17. Regin, J. C., & Puget, J. F. (1997). A filtering algorithm for global sequencing constraints. In Lecture notes in computer science : Vol. 1330. Principles and practice of constraint programming, CP-97 (pp. 32–46). Berlin: Springer. CrossRefGoogle Scholar
  18. Resende, M. G. C., & Ribeiro, C. C. (2002). Greedy randomize adaptive search procedures. In F. Glover & G. Kochenberger (Eds.), Handbook of metaheuristics (pp. 219–249). Dordrecht: Kluwer Academic. Google Scholar
  19. Scholl, A. (1999). Balancing and sequencing of assembly lines. Heidelberg: Physica. Google Scholar
  20. Silver, E. A., Pyke, D. F., & Peterson, R. (1998). Inventory management and production planning and scheduling (3rd edn.). New York: Wiley. Google Scholar
  21. Tsang, E. (1993). Foundations of constraint satisfaction. New York: Academic Press. Google Scholar
  22. van Hentenryck, P., & Michel, L. (2005). Constraint-based local search. London: MIT Press. Google Scholar
  23. van Hentenryck, P., Simonis, H., & Dincbas, M. (1992). Constraint satisfaction using constraint logic programming. Artificial Intelligence, 58, 113–119. CrossRefGoogle Scholar
  24. Warwick, T., & Tsang, E. P. K. (1995). Tackling car sequencing problems using a generic genetic algorithm. Evolutionary Computation, 3, 267–298. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Joaquín Bautista
    • 1
  • Jordi Pereira
    • 1
  • Belarmino Adenso-Díaz
    • 2
  1. 1.Nissan ChairUniversidad Politécnica de CatalunyaBarcelonaSpain
  2. 2.Escuela Politécnica Superior de Ingeniería de GijónUniversidad de OviedoGijónSpain

Personalised recommendations