Journal of Scheduling

, Volume 8, Issue 2, pp 179–190 | Cite as

Scheduling trees with large communication delays on two identical processors

  • F. Afrati
  • E. Bampis
  • L. Finta
  • I. Milis


We consider the problem of scheduling trees on two identical processors in order to minimize the makespan. We assume that tasks have unit execution times, and arcs are associated with large identical integer communication delays. We prove that the problem is NP-hard in the strong sense even when restricted to the class of binary trees, and we provide a polynomial-time algorithm for complete binary trees.


scheduling makespan communication delays trees two processors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ali, H. and H. El-Rewini, “The time complexity of scheduling interval orders with communication is polynomial” Parallel Processing Letters, 3(1), 53–58 (1993).Google Scholar
  2. Bampis, E., A. Giannakos, and J.-C. Konig, “On the complexity of scheduling with Large communication delays” Europ. Journal of Operational Research, 94, 252–260 (1996).Google Scholar
  3. Chrétienne, P. and C. Picouleau, “Scheduling with communication delays: A survey” in P. Chrétienne et al. (eds.), Scheduling Theory and Its Applications, J. Wiley, 1995.Google Scholar
  4. Coffman Jr., E. G. and R. L. Graham, “Optimal scheduling for two-processor systems,” Acta Informatica, 1, 200–213 (1972).Google Scholar
  5. Jung, H., L. Kirousis, and P. Spirakis, “Lower bounds and efficient algorithms for multiprocessor scheduling of DAGs with communication delays” Information and Computation, 105, 94–104 (1993).Google Scholar
  6. Jakoby A. and R. Reischuk, “The complexity of scheduling problems with communication delays for trees” inProc. Scandinavian Workshop on Algorithm Theory, (SWAT’92), Springer Verlag LNCS-621 1992, pp. 165–177.Google Scholar
  7. Finta, L., Z. Liu, I. Mills, and E. Bampis, “Scheduling UET-UCT series parallel graphs on two processors” Theoretical Computer Science, 162(2), 323–340 (1996).Google Scholar
  8. Fujii, M., T. Kasami, and K. Ninomiya, “Optimal sequencing of two equivalent processors” SIAM J. App. Math., 17(4), 784–789 (1969).Google Scholar
  9. Gao, L., A. L. Rosenberg and R. K. Sitaraman, “Optimal architecture-independent scheduling of fine-grain tree-sweep computations” in Proc. 7th IEEE Symposium on Parallel and distributed Processing, 1995 pp. 620–629.Google Scholar
  10. Garey, M. R. and D. S. Johnson, “Computers and Intractability, A Guide to the Theory of NP-completeness” Ed. Freeman (1979).Google Scholar
  11. Graham, R. L., E. L. Lawler, J. K. Lenstra, and K. Rinnooy Kan, “Optimization and approximation in deterministic scheduling: A survey” Ann. Disc. Math., 5, 287–326 (1979).Google Scholar
  12. Guinand, F. and D. Trystram, “Optimal scheduling of UECT trees on two processors” Technical Report APACHE RR-93-03, IMAG, Grenoble, 1993.Google Scholar
  13. Lenstra, J. K., M. Veldhorst, and B. Veltman, “The complexity of scheduling trees with communication delays” Journal of Algorithms, 20(1), 157–173 (1996).Google Scholar
  14. Norman, M. G., S. Pelagatti, and P. Thanisch, “On the complexity of scheduling with communication delay and contention” Parallel Processing Letters, 5(3), 331–341 (1995).Google Scholar
  15. Papadimitriou, C. and M. Yannakakis, “Towards an architecture-independent analysis of parallel algorithms” SIAM J. on Computing, 2, 322–328 (1990).Google Scholar
  16. Picouleau, C., “Etude des problémes d’optimisation dans les systémes distribues” Ph.D. Thesis, Université Pierre et Marie Curie, France, 1992.Google Scholar
  17. Rayward-Smith, V. J., “UET Scheduling with unit interprocessor communication delays” Disc. Appl. Math., 18, 55–71 (1987).Google Scholar
  18. Varvarigou, T., V. P. Roychowdhury, T. Kailath, and E. Lawler, “Scheduling in and out forests in the presence of communication delays” IEEE Trans, on Parallel and Distributed Systems, 7(10), 1065–1074 (1996).Google Scholar
  19. Veldhorst, M., “A linear time algorithm to schedule trees with communication delays optimally on two machines” Technical Report COSOR 93-07, Dep. of Math, and Comp. Sci., Eindhoven Univ. of Technology (1993).Google Scholar
  20. Veltman, B. “Multiprocessor scheduling with communication delays” Ph.D. Thesis, CWI-Amsterdam (1993).Google Scholar
  21. Veltman, B., B. J. Lageweg, and J. K. Lenstra, “Multiprocessor scheduling with communication delays” Parallel Computing, 16, 173–182 (1990).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.National Technical University of AthensAthensGreece
  2. 2.LaMIUniversité d’EvryEvry CedexFrance
  3. 3.LIPNUniversité ParisVilletaneuse CedexFrance
  4. 4.Athens University of Economics and BusinessAthensGreece

Personalised recommendations