Advertisement

On the application of the fk-MUSIC method to measurement of multimode surface wave phase velocity dispersion from receiver arrays

  • Arjun DattaEmail author
Short Communication
  • 79 Downloads

Abstract

The fk-MUSIC method, little known in earthquake seismology, is reviewed and compared with two other methods—frequency domain slant-stack and UC-diagram—for measurement of surface wave phase velocity dispersion from array seismic data. The three methods have been implemented in Python for this study and we assess their capabilities and sensitivity to data characteristics using a variety of synthetic tests. This is followed by application of the methods to data from the Transportable Array component of USArray. In terms of real data applications for regional studies, we conclude all three methods are effective only when data from very long station arrays (∼ 3 − 4 times the longest wavelength of interest, so > 2000 km for upper mantle studies) is available. Moreover, although fk-MUSIC provides high resolution, it is substantially less effective than the well established UC-diagram technique, at recovering multimode dispersion.

Keywords

fk-MUSIC Surface wave dispersion Phase velocity Higher modes Seismic arrays 

Notes

Acknowledgements

I would like to acknowledge the Dr. Manmohan Singh Scholarship provided by St. John’s College in support of my PhD studentship at the University of Cambridge as well as a Society of Exploration Geophysicists (SEG) Foundation scholarship (SEG/Chevron Scholarship and SEG/John Bookout Scholarship) received during the last year of my study. I wish to thank Keith Priestley for providing the Transportable Array data analyzed in this study as well as the GMT script used to build station profiles. I am grateful to Chris Chapman and Everhard Muyzert for helping me understand the fk-MUSIC method. Finally, I thank Frederik Tilmann for his comments and suggestions on an early draft of this manuscript, and an anonymous reviewer for suggesting a number of significant final improvements.

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

Supplementary material

10950_2018_9803_MOESM1_ESM.pdf (38 mb)
(PDF 38.0 MB)

References

  1. Brune J, Dorman J (1963) Seismic waves and earth structure in the Canadian shield. Bull Seismol Soc Am 53(1):167–210Google Scholar
  2. Capon J (1969) High-resolution frequency-wavenumber spectrum analysis. Proc IEEE 57(8):1408–1418CrossRefGoogle Scholar
  3. Cara M (1976) Observations d’ondes S a de type SH. Pure Appl Geophys 114(1):141–157.  https://doi.org/10.1007/BF00875498 CrossRefGoogle Scholar
  4. Cara M (1978) Regional variations of higher Rayleigh-mode phase velocities: a spatial-filtering method. Geophys J Int 54(2):439–460CrossRefGoogle Scholar
  5. Cara M, Minster JB (1981) Multi-mode analysis of Rayleigh-type Lg. Part 1. theory and applicability of the method. Bull Seismol Soc Am 71(4):973–984Google Scholar
  6. Crotwell HP, Owens TJ (2005) Automated receiver function processing. Seismol Res Lett 76 (6):702–709CrossRefGoogle Scholar
  7. Datta A, Priestley KF, Roecker S, Chapman CH (2017) Surface wave mode coupling and the validity of the path average approximation in surface waveform inversions: an empirical assessment. Geophys J Int 211(2):1099– 1120CrossRefGoogle Scholar
  8. Douma H, Haney MM (2013) Exploring nonlinearity and nonuniqueness in surface-wave inversion for near-surface velocity estimation. Lead Edge 32(6):648–655CrossRefGoogle Scholar
  9. Duputel Z, Cara M, Rivera L, Herquel G (2010) Improving the analysis and inversion of multimode rayleigh-wave dispersion by using group-delay time information observed on arrays of high-frequency sensors. Geophysics 75(2):R13–R20CrossRefGoogle Scholar
  10. Endrun B, Meier T, Lebedev S, Bohnhoff M, Stavrakakis G, Harjes HP (2008) S velocity structure and radial anisotropy in the Aegean region from surface wave dispersion. Geophys J Int 174(2):593–616CrossRefGoogle Scholar
  11. Goldstein P, Archuleta RJ (1987) Array analysis of seismic signals. Geophys Res Lett 14(1):13–16CrossRefGoogle Scholar
  12. Gomberg JS, Masters TG (1988) Waveform modelling using locked-mode synthetic and differential seismograms: application to determination of the structure of Mexico. Geophys J Int 94(2):193–218CrossRefGoogle Scholar
  13. Gouédard P, Cornou C, Roux P (2008) Phase-velocity dispersion curves and small-scale geophysics using noise correlation slantstack technique. Geophys J Int 172(3):971–981.  https://doi.org/10.1111/j.1365-246X.2007.03654.x CrossRefGoogle Scholar
  14. Herrmann R (1996) Computer programs in seismology: 3.0 Saint Louis University. Saint Louis, MissouriGoogle Scholar
  15. Holschneider M, Diallo MS, Kulesh M, Ohrnberger M, Lück E, Scherbaum F (2005) Characterization of dispersive surface waves using continuous wavelet transforms. Geophys J Int 163(2):463–478.  https://doi.org/10.1111/j.1365-246X.2005.02787.x CrossRefGoogle Scholar
  16. Iranpour K, Muyzert E, Grion S (2002) Local velocity analysis by parametric wavenumber estimation in seismic-fk-music. In: 64th EAGE conference & exhibitionGoogle Scholar
  17. Isse T, Shiobara H, Fukao Y, Mochizuki K, Kanazawa T, Sugioka H, Kodaira S, Hino R, Suetsugu D (2004) Rayleigh wave phase velocity measurements across the Philippine sea from a broad-band OBS array. Geophys J Int 158(1):257–266.  https://doi.org/10.1111/j.1365-246X.2004.02322.x CrossRefGoogle Scholar
  18. Johnson DH, Dudgeon DE (1993) Array signal processing: concepts and techniques. P T R Prentice Hall, Englewood CliffsGoogle Scholar
  19. Käastle ED, Soomro R, Weemstra C, Boschi L, Meier T (2016) Two-receiver measurements of phase velocity: cross-validation of ambient-noise and earthquake-based observations. Geophys J Int 207(3):1493–1512.  https://doi.org/10.1093/gji/ggw341 CrossRefGoogle Scholar
  20. Kennett B, Engdahl E, Bulland R (1995) Constraints on seismic velocities in the earth from travel times. Geophys J Int 122:108–124CrossRefGoogle Scholar
  21. Kim DS, Park HC (2002) Determination of dispersive phase velocities for sasw method using harmonic wavelet transform. Soil Dyn Earthq Eng 22(8):675–684CrossRefGoogle Scholar
  22. Knopoff L, Mueller S, Pilant W (1966) Structure of the crust and upper mantle in the Alps from the phase velocity of Rayleigh waves. Bull Seismol Soc Am 56(5):1009– 1044Google Scholar
  23. Kulesh M, Holschneider M, Diallo MS, Xie Q, Scherbaum F (2005) Modeling of wave dispersion using continuous wavelet transforms. Pure Appl Geophys 162(5):843–855.  https://doi.org/10.1007/s00024-004-2644-9 CrossRefGoogle Scholar
  24. Kulesh M, Holschneider M, Ohrnberger M, Lück E (2008) Modeling of wave dispersion using continuous wavelet transforms II: wavelet-based frequency-velocity analysis. Pure Appl Geophys 165(2):255–270CrossRefGoogle Scholar
  25. McMechan G, Yedlin M (1981) Analysis of dispersive waves by wave field transformation. Geophysics 46(6):869–874.  https://doi.org/10.1190/1.1441225 CrossRefGoogle Scholar
  26. Meier T, Dietrich K, Stöckhert B, Harjes HP (2004) One-dimensional models of shear wave velocity for the eastern mediterranean obtained from the inversion of Rayleigh wave phase velocities and tectonic implications. Geophys J Int 156(1):45–58.  https://doi.org/10.1111/j.1365-246X.2004.02121.x CrossRefGoogle Scholar
  27. Merrer S, Cara M, Rivera L, Ritsema J (2007) Upper mantle structure beneath continents: new constraints from multi-mode Rayleigh wave data in western North America and southern Africa. Geophys Res Lett 34(6):L06,309.  https://doi.org/10.1029/2006GL028939 CrossRefGoogle Scholar
  28. Miller RD, Xia J, Park CB, Ivanov JM (1999) Multichannel analysis of surface waves to map bedrock. Lead Edge 18(12):1392–1396CrossRefGoogle Scholar
  29. Misbah AS, Strobbia CL (2014) Joint estimation of modal attenuation and velocity from multichannel surface wave data. Geophysics 79(3):EN25–EN38CrossRefGoogle Scholar
  30. Nolet G (1975) Higher Rayleigh modes in western Europe. Geophys Res Lett 2(2):60–62CrossRefGoogle Scholar
  31. Nolet G, Panza GF (1976) Array analysis of seismic surface waves: limits and possibilities. Pure Appl Geophys 114(5):775–790CrossRefGoogle Scholar
  32. Okal EA, Jo BG (1985) Stacking investigations of higher-order mantle Rayleigh waves. Geophys Res Lett 12(7):421– 424CrossRefGoogle Scholar
  33. Park CB, Miller RD, Xia J, et al. (1996) Multi-channel analysis of surface waves using vibroseis (MASWV). In: SEG annual meeting, society of exploration geophysicistsGoogle Scholar
  34. Park CB, Miller RD, Xia J, et al. (1998) Imaging dispersion curves of surface waves on multi-channel record. In: SEG expanded abstracts, vol 17, pp 1377–1380Google Scholar
  35. Park CB, Miller RD, Xia J (1999a) Multichannel analysis of surface waves. Geophysics 64 (3):800–808CrossRefGoogle Scholar
  36. Park CB, Miller RD, Xia J (1999b) Multimodal analysis of high frequency surface waves. In: Proceedings of the symposium on the application of geophysics to engineering and environmental problems, vol 99, pp 115–121Google Scholar
  37. Poggi V, Fäh D, Giardini D (2013) Time–frequency–wavenumber analysis of surface waves using the continuous wavelet transform. Pure Appl Geophys 170(3):319–335CrossRefGoogle Scholar
  38. Rost S, Thomas C (2002) Array seismology: methods and applications. Rev Geophys 40(3):2–1–2-27.  https://doi.org/10.1029/2000RG000100, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2000RG000100 CrossRefGoogle Scholar
  39. Rost S, Thomas C (2009) Improving seismic resolution through array processing techniques. Surv Geophys 30(4-5):271–299CrossRefGoogle Scholar
  40. Schmidt R (1986) Multiple emitter location and signal parameter estimation. IEEE Trans Antennas Propag 34(3):276–280.  https://doi.org/10.1109/TAP.1986.1143830 CrossRefGoogle Scholar
  41. Socco LV, Foti S, Boiero D (2010) Surface-wave analysis for building near-surface velocity models — established approaches and new perspectives. Geophysics 75(5):75A83–75A102 .  https://doi.org/10.1190/1.3479491 CrossRefGoogle Scholar
  42. Soomro RA, Weidle C, Cristiano L, Lebedev S, Meier T, Wilde-Piórko M, Geissler W, Plomerová J, Grad M, Babuška V, Brückl E, Čyžiene J, Czuba W, England R, Gaczyński E, Gazdova R, Gregersen S, Guterch A, Hanka W, Hegedus E, Heuer B, Jedlička P, Lazauskiene J, Randy Keller G, Kind R, Klinge K, Kolinsky P, Komminaho K, Kozlovskaya E, Krüger F, Larsen T, Majdański M, Málek J, Motuza G, Novotný O, Pietrasiak R, Plenefisch T, Råužek B, Sliaupa S, Środa P, Świeczak M, Tiira T, Voss P, Wiejacz P (2016) Phase velocities of Rayleigh and Love waves in central and northern Europe from automated, broad-band, interstation measurements. Geophys J Int 204(1).  https://doi.org/10.1093/gji/ggv462 CrossRefGoogle Scholar
  43. Van der Kruk J, Arcone S, Liu L, et al. (2007) Fundamental and higher mode inversion of dispersed GPR waves propagating in an ice layer. IEEE Trans Geosci Remote Sens 45(8):2483–2491CrossRefGoogle Scholar
  44. Verachtert R, Lombaert G, Degrande G (2018) Multimodal determination of Rayleigh dispersion and attenuation curves using the circle fit method. Geophys J Int 212(3):2143–2158.  https://doi.org/10.1093/gji/ggx523 CrossRefGoogle Scholar
  45. Xia J, Xu Y, Miller RD (2007) Generating an image of dispersive energy by frequency decomposition and slant stacking. Pure Appl Geophys 164(5):941–956CrossRefGoogle Scholar
  46. Yao H, van der Hilst RD, de Hoop MV (2006) Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis - I. Phase velocity maps. Geophys J Int 166(2):732–744.  https://doi.org/10.1111/j.1365-246X.2006.03028.x CrossRefGoogle Scholar
  47. Zhang X, Paulssen H, Lebedev S, Meier T (2007) Surface wave tomography of the Gulf of California. Geophys Res Lett 34(15).  https://doi.org/10.1029/2007GL030631

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Bullard Laboratories, Department of Earth SciencesUniversity of CambridgeCambridgeUK
  2. 2.Department of Astronomy and AstrophysicsTata Institute of Fundamental ResearchColabaIndia

Personalised recommendations