Journal of Seismology

, Volume 23, Issue 1, pp 151–164 | Cite as

QLg wave tomography beneath Norway

  • Andrea DemuthEmail author
  • Lars Ottemöller
  • Henk Keers


The propagation of seismic waves is influenced by changes in crustal structure as for example the transition from continental to oceanic crust along the Norwegian margin. We analyzed Lg wave propagation to map lateral crustal changes in Norway and adjacent areas. We used 1369 observations from 279 earthquakes recorded mostly by the Norwegian National Seismic Network between 1990 and 2017. First, we classified Lg wave propagation in terms of efficiency through Lg/Pn ratios and found significant changes between ray paths crossing offshore and onshore areas. Then we derived an average QLg(f) = 529 f0.42 model for Norway, which is in the expected range for a stable tectonic environment. This was used as starting model for a tomographic inversion. We present tomographic models of Lg wave attenuation at frequencies 2 Hz, 4 Hz, and 6 Hz, respectively. We observed the most significant variation between offshore and onshore regions. This can be explained by changes in crustal structure and the occurrence of unconsolidated sediments in the offshore areas.


QLg Attenuation Tomography Norway NNSN 



We thank Olav Eldholm and an anonymous reviewer for their constructive comments. This work was carried out under the NNSN project that is financially supported by the Norwegian Oil and Gas Association.


  1. Aki K (1980) Scattering and attenuation of shear waves in the lithosphere. J Geophys Res 85 (B11):6496–6504CrossRefGoogle Scholar
  2. Alsaker A, Kvamme LB, Hansen RA, Dahle A, Bungum H (1991) The ML scale in Norway. Bull Seismol Soc Am 81(2):379–398Google Scholar
  3. Barmin MP, Ritzwoller MH, Levshin AL (2001) A fast and reliable method for surface wave tomography. Pure Appl Geophys 158:1351–1375CrossRefGoogle Scholar
  4. Benz HM, Frankel A, Boore DM (1997) Regional Lg attenuation for the continental United States. Bull Seismol Soc Am 87(3):606–619Google Scholar
  5. Bouchon M (1982) The complete synthesis of seismic crustal phases at regional distances. J Geophys Res 87(B3):1735–1741CrossRefGoogle Scholar
  6. Campillo M, Plantet JL (1991) Frequency dependence and spatial distribution of seismic attenuation in France: experimental results and possible interpretation. Phys Earth Planet In 67:48–64CrossRefGoogle Scholar
  7. Eldholm O, Tsikalas F, Faleide JI (2002) Continental margin off Norway 62-75N: Palaeogene tectono-magmatic segmentation and sedimentation. The North Atlantic Igneous Province: stratigraphy, tectonics, volcanic and magmatic processes: geological society, vol 197, London, pp 39–68Google Scholar
  8. Erickson D, McNamara DE, Benz HM (2004) Frequency-dependent Lg Q within the continental United States. Bull Seismol Soc Am 94(5):1630–1643CrossRefGoogle Scholar
  9. Faleide JI, Tsikalas F, Breivik AJ, Mjelde R, Ritzmann O, Engen Ø, Wilson J, Eldholm O (2008) Structure and evolution of the continental margin off Norway and the Barents Sea. Episodes 3:82–91Google Scholar
  10. Fan G, Lay T (2002) Characteristics of Lg attenuation in the Tibetan Plateau. J Geophys Res 107(B10):2256. CrossRefGoogle Scholar
  11. Ford SR, Dreger DS, Mayeda K, Walter WR, Malagnini L, Phillips WS (2008) Regional attenuation in northern California: a comparison of five 1D Q methods. Bull Seismol Soc Am 98 (4):2033–2046. CrossRefGoogle Scholar
  12. Gaal G, Gorbatschev R (1987) An outline of the precambrian evolution of the baltic shield. Precambrian Res 35:15–52CrossRefGoogle Scholar
  13. Grad M, Tiira T, Group EW (2009) The Moho depth map of the European Plate. Geophys J Int 176:279–292. CrossRefGoogle Scholar
  14. Gregersen S (1984) Crustal structure anomalies detected with Lg waves in grabens near continental margins in Greenland and the North Sea. Mar Geophys Res 6:409–413CrossRefGoogle Scholar
  15. Herrmann RB, Kijko A (1983) Modeling some empirical vertical component Lg relations. Bull Seismol Soc Am 73(1): 157–171Google Scholar
  16. Hjelstuen BO, Eldholm O, Skogseid J (1999) Cenozoic evolution of the northern Vøring margin. GSA Bull 111(12): 1792–1807CrossRefGoogle Scholar
  17. Hong TK (2010) Lg attenuation in a region with both continental and oceanic enviroments. Bull Seismol Soc Am 100(2):851–858. CrossRefGoogle Scholar
  18. Kennett B, Mykkeltveit S (1984) Guided wave propagation in laterally varying media - II. Lg-waves in north-western Europe. Geophys J R Astron Soc 79:257–267CrossRefGoogle Scholar
  19. Kinck JJ, Husebye ES, Larsson FR (1993) The Moho depth distribution in Fennoscandia and the regional tectonic evolution from Archean to Permian times. Precambrian Res 64: 23–51CrossRefGoogle Scholar
  20. Kvamme LB, Hansen RA, Bungum H (1995) Seismic-source and wave-propagation effect of Lg waves in Scandinavia. Geophys J Int 120:525–536CrossRefGoogle Scholar
  21. Maupin V, Agostini A, Artemieva I, Balling N, Beekman F, Ebbing J, England RW, Frassetto A, Gradmann S, Jacobsen BH, Köhler A, Kvarven T, Medhus AB, Mjelde R, Ritter J, Sokoutis D, Stratford W, Thybo H, Wawerzinek B, Weidle C (2013) The deep structure of the Scandes and its relation to tectonic history and present-day topography. Tectonophysics 602:15–37. CrossRefGoogle Scholar
  22. Mendi CD, Ruud BO, Husebye ES (1997) The North Sea Lg-blockage puzzle. Geophys J Int 130:669–680CrossRefGoogle Scholar
  23. Mjelde R, Raum T, Digranes P, Shimamura H, Shiobara H, Kodair S (2003) Vp/Vs ratio along the Vøring Margin, NE Atlantic, derived from OBS data: implications on lithology and stress field. Tectonophysics 369:175–197. CrossRefGoogle Scholar
  24. Mjelde R, Raum T, Myhren B, Shimamura H, Murai Y, Takanami T, Karpuz R, Næss U (2005) Continent-ocean transition on the Vøring Plareau, NE Atlantic, derived from densely sampled ocean bottom seismometer data. J Geophys Res 110:B05,101. CrossRefGoogle Scholar
  25. Mosar J (2003) Scandinavia’s North Atlantic passive margin. J Geophys Res 108(B8):2360. CrossRefGoogle Scholar
  26. Mousavi SM, Cramer CH, Langston CA (2014) Average Q Lg, Q Sn and observation of Lg blockage in the Continental Margin of Nova Scotia. J Geophys Res Solid Earth 119: 7722–7744. CrossRefGoogle Scholar
  27. Nielsen SB, Gallagher K, Leighton C, Balling N, Svenningsen L, Jacobsen BH, Thomsen E, Nielsen OB, Heilmann-Clausen C, Egholm DL, Summerfield MA, Clausen OR, Piotrowski JA, Thorsen MR, Huuse M, Abrahamsen N, King C, Lykke-Andersen H (2009) The evolution of western Scandinavian topography: a review of Neogene uplift versus the ICE (isostasy-climate-erosion) hypothesis. J Geodyn 47:72–95CrossRefGoogle Scholar
  28. Noriega R, Ugalde A, Villaseñor A, Harnafi M (2015) Frequency-dependent Lg-wave attenuation in northern Morocco. Tectonophysics 663:250–260CrossRefGoogle Scholar
  29. Olesen O, Lundin E, Nordgulen Ø, Osmundsen PT, Skilbrei JR, Smethurst MA, Solli A, Bugge T, Fichler C (2002) Bridging the gap between the onshore and offshore geology in Nordland, Northern Norway. Nor J Geol 82:243–262Google Scholar
  30. Olesen O, Brönner M, Ebbing J, Gellein J, Gernigon L, Koziel J, Lauritsen T, Myklebust R, Pascal C, Sand M, Solheim D, Usov S (2010) New aeromagnetic and gravity compilations from Norway and adjacent areas: method and applications. Petroleum Geol Conf Series 7:559–586. CrossRefGoogle Scholar
  31. Ottemöller L (2002) Lg wave Q tomography in Central America. Geophys J Int 150:295–302CrossRefGoogle Scholar
  32. Ottemöller L, Midizi V (2003) The crustal structure of Norway from inversion of teleseismic receiver functions. J Seismol 7:35–48CrossRefGoogle Scholar
  33. Ottemöller L, Shapiro M, Singh SK, Pacheco JF (2002) Lateral variation of Lg wave propagation in southern Mexico. J Geophys Res 107(B1):ESE 3–1– ESE 3–13. CrossRefGoogle Scholar
  34. Sargeant S, Ottemöller L (2009) Lg wave attenuation in Britain. Geophys J Int 179:1593–1606. CrossRefGoogle Scholar
  35. Sclater JG, Christie PAF (1980) Continental stretching: an explanation of the Post-Mid-Cretaceous subsidence of the central North Sea basin. J Geophys Res 85(B7):3711–3739. CrossRefGoogle Scholar
  36. Sereno TJ, Bratt SR, Bache TC (1988) Simultaneous inversion of regional wave spectra for attenuation and seismic moment in Scandinavia. J Geophys Res 93(B3):2019– 2035CrossRefGoogle Scholar
  37. Shapiro N, Béthoux N, Campillo M, Paul A (1996) Regional seismic phases across the Ligurian Sea: Lg blockage and oceanic propagation. Physics of the Earth and Planetary InteriorsGoogle Scholar
  38. Singh S, Herrmann RB (1983) Regionalization of crustal coda Q in the continental United States. J Geophys Res 88(B1):527–538. CrossRefGoogle Scholar
  39. Skilbrei JR, Olesen O, Osmundsen PT, Kihle O, Aaro S, Fjellanger E (2002) A study of basement structures and onshore-offshore correlations in Central Norway. Nor J Geol 82:263–279Google Scholar
  40. Stratford W, Thybo H, Faleide JI, Olesen O, Tryggvason A (2009) New Moho Map onshore southern Norway. Geophys J Int 178:1755–1765. CrossRefGoogle Scholar
  41. Talwani M, Eldholm O (1977) Evolution of the Norwegian-Greenland Sea. Geol Soc Am Bull 88 (70708):969–999CrossRefGoogle Scholar
  42. Tsikalas F, Eldholm O, Faleide JI (2005a) Crustal structure of the Lofoten-Vesterȧlen continental margin, off Norway. Tectonophysics 404:151–174.
  43. Tsikalas F, Faleide JI, Eldholdm O, Wilson J (2005b) Late Mesozoic-Cenozoic structural and stratigraphic correlations between the conjugate mid-Norway and NE Greenland contiental margins. Geol Soc London Petroleum Geol Con Series 6:785–801.
  44. Zhang TR, Lay T (1995) Why Lg phase does not traverse oceanic crust. Bull Seismol Soc Am 85:1665–1678Google Scholar
  45. Zhao LF, Xie XB, Wang WM, Zhang JH, Yao ZX (2010) Seismic Lg-wave Q tomography in and around Northeast China. J Geophys Res 115:B08,307. Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Earth ScienceUniversity of BergenBergenNorway

Personalised recommendations