Journal of Seismology

, Volume 22, Issue 4, pp 985–1003 | Cite as

Seismicity in the block mountains between Halle and Leipzig, Central Germany: centroid moment tensors, ground motion simulation, and felt intensities of two M ≈ 3 earthquakes in 2015 and 2017

  • Torsten DahmEmail author
  • Sebastian Heimann
  • Sigward Funke
  • Siegfried Wendt
  • Ivo Rappsilber
  • Dino Bindi
  • Thomas Plenefisch
  • Fabrice Cotton


On April 29, 2017 at 0:56 UTC (2:56 local time), an MW = 2.8 earthquake struck the metropolitan area between Leipzig and Halle, Germany, near the small town of Markranstädt. The earthquake was felt within 50 km from the epicenter and reached a local intensity of I0 = IV. Already in 2015 and only 15 km northwest of the epicenter, a MW = 3.2 earthquake struck the area with a similar large felt radius and I0 = IV. More than 1.1 million people live in the region, and the unusual occurrence of the two earthquakes led to public attention, because the tectonic activity is unclear and induced earthquakes have occurred in neighboring regions. Historical earthquakes south of Leipzig had estimated magnitudes up to MW ≈ 5 and coincide with NW-SE striking crustal basement faults. We use different seismological methods to analyze the two recent earthquakes and discuss them in the context of the known tectonic structures and historical seismicity. Novel stochastic full waveform simulation and inversion approaches are adapted for the application to weak, local earthquakes, to analyze mechanisms and ground motions and their relation to observed intensities. We find NW-SE striking normal faulting mechanisms for both earthquakes and centroid depths of 26 and 29 km. The earthquakes are located where faults with large vertical offsets of several hundred meters and Hercynian strike have developed since the Mesozoic. We use a stochastic full waveform simulation to explain the local peak ground velocities and calibrate the method to simulate intensities. Since the area is densely populated and has sensitive infrastructure, we simulate scenarios assuming that a 12-km long fault segment between the two recent earthquakes is ruptured and study the impact of rupture parameters on ground motions and expected damage.


Deep crustal intraplate seismicity Centroid moment tensor of M ≈ 3 earthquakes Observed and simulated ground motions 



We thank the Grube Teutschenthal Sicherungs GmbH & Co. KG (GTS), Lausitzer und Mitteldeutsche Bergbau-Verwaltungsgesellschaft mbH (LMBV) and K-UTEC Salt Technologies AG for providing waveform data from Teutschenthal and Nachterstedt areas. Jens Skapinski shared felt reports collected on “Juskis Erdbebennews” with us, and Diethelm Kaiser from BGR provided some additional questionnaires. Nima Nooshiri is thanked for helping with Fig. 7a. We especially thank all helpers and staff running the excellent network of the Seismologie-Verbund in Central Germany. We are grateful to two anonymous reviewers who provided detailed and constructive reviews.

Supplementary material

10950_2018_9746_MOESM1_ESM.pdf (9.6 mb)
(PDF 9.61 MB)


  1. Allen TI, Wald D, Warden CB (2012) Intensity attenuation for active seismic regions. J Seismol.
  2. Atkinson GM, Kaka SI (2006) Relationships between felt intensity and instrumental ground motion for New Madrid ShakeMaps, Technical report. Department of Sciences, Carleton University. OttawaGoogle Scholar
  3. Atkinson GM, Wald DJ (2007) ”Did you feel it?” intensity data: a surprisingly good measure of earthquake ground motion. Seismol Res Lett.
  4. Bankwitz P, Schneider G, Kämpf H, Bankwitz E (2003) Structural characteristics of epicentral areas in Central Europe: study case Cheb Basin (Czech Republic). J Geodyn 35:5–32. CrossRefGoogle Scholar
  5. Bassin C, Laske G, Masters G (2000) The current limits of resolution for surface wave tomography in North America. EOS Trans AGU 81:F897Google Scholar
  6. Becker H, Lindner H, Schenke G, Schied G (1989) Mitteldeutsche schwelle/zentralteil - komplexbericht. VEB Geophysik, Leipzig (unpublished)Google Scholar
  7. Berger N (1994) Attenuation of seismic ground motion due to the 1992 Roermond earthquake, the Netherlands (extended abstract). Geol Mijnb 73:309–313Google Scholar
  8. Bormann P, Bankwitz P (eds) (1986) Komplexinterpretation des profilnetzes ZENTROSEIS abschlussbericht der SAD tiefenerkundung. Zentralinstitut für Physik der Erde, Potsdam (unpublished)Google Scholar
  9. Braunmiller J, Dahm T, Bonjer KP (1994) Source mechanism of the 1992 Roermond earthquake from surface-wave inversion of regional data. Geophys J Int 116:663–672. CrossRefGoogle Scholar
  10. Camelbeeck T, Eck T (1994) The Roer Valley Graben earthquake of 13 April 1992 and its seismotectonic setting. Terra Nova 6:291–300. CrossRefGoogle Scholar
  11. Castro RR, Franceschina G, Pacor F, Bindi D, Luzi L (2006) Analysis of the frequency dependence of the S-wave radiation pattern from local earthquakes in Central Italy. Bull Seismol Soc Am 96:415–426. CrossRefGoogle Scholar
  12. Cauzzi C, Edwards B, Fäh D, Clinton J, Wiemer S, Kästli P, Cua G, Giardini D (2015) New predictive equations and site amplification estimates for the next generation Swiss ShakeMaps. Geophys J Int 200:421–438. CrossRefGoogle Scholar
  13. Cesca S, Heimann S, Kriegerowski M, Saul J, Dahm T (2017) Moment tensor inversion for nuclear explosions: what can we learn from the 6 January and 9 September 2016 nuclear tests, North Korea? Seismol Res Lett 88:300–310. CrossRefGoogle Scholar
  14. Cotton F, Archuleta R, Causse M (2013) What is Sigma of the stress drop? Seismol Res Lett 84:42–48. CrossRefGoogle Scholar
  15. Dost B, van Eck T, Haak H (2004) Scaling of peak ground acceleration and peak ground velocity recorded in The Netherlands. Neth Boll Geof Teor Appl 45:153–168Google Scholar
  16. Drouet S, Cotton F (2015) Regional stochastic GMPE’s in low-seismicity areas. Scaling and aleatoric variability analysis—application to the French Alps. Bull Seismol Soc Am 105:1883–1902. CrossRefGoogle Scholar
  17. Ebel J, Wald D (2003) Bayesian estimations of peak ground acceleration and 5% damped spectral acceleration from modified mercalli intensity data. Earthquake Spectra 19:511–529CrossRefGoogle Scholar
  18. Faenza L, Michelini A (2010) Regression analysis of MCS intensity and ground motion parameters in Italy and its application in ShakeMap. Geophys J Int 180:1138–1152. CrossRefGoogle Scholar
  19. Fischer T, Horálek J, Hrubcová P, Vavryčuk V, Bräuer K, Kämpf H (2014) Intra-continental earthquake swarms in West-Bohemia and Vogtland: a review. Tectonophysics 611:1–27. CrossRefGoogle Scholar
  20. Grünthal G (1998) European macroseismic scale 1998 (EMS-98) cahiers du centre Européen de géodynamique et de séismologie 15. Centre Européen de géodynamique et de séismologie, LuxembourgGoogle Scholar
  21. Grünthal G, Wahlström R (2012) The European-Mediterranean earthquake catalogue (EMEC) for the last millennium. J Seismol 16:535–570. CrossRefGoogle Scholar
  22. Grünthal G, Mayer-Rosa D, Lenhardt W (1998) Abschätzung der erdbebengefährdung für die D-A-CH-Staaten - Deutschland, Österreich, Schweiz. Bautechnik 75:753–767CrossRefGoogle Scholar
  23. Heimann S (2011) A robust method to estimate kinematic earthquake source parameters. Dissertation, University of Hamburg.
  24. Heimann S, Kriegerowski M, Isken M, Cesca S, Daout S, Grigoli F, Juretzek C, Megies T, Nooshiri N, Steinberg A, Sudhaus H, Vasyura-Bathke H, Willey T, Dahm T (2017) Pyrocko - an open-source seismology toolbox and library. V. 0.3. GFZ Data Services.
  25. Hinzen K (2005) Ground motion parameters of the July 22, 2002, M L 4.9 Alsdorf (Germany) earthquake. Boll Geofis Teor Appl 4:303–318Google Scholar
  26. Kämpf H et al (1991) Zur strukturellen Bedeutung der Nord-Süd-Bruchstörungszone Plauen/Klingenthal – Altenberg/Gera – Leipzig/Halle – Dessau/Bernburg, Tagungsband Geologisch-tektonischer Bau der Gera-Jachymov (Joachimsthal)-Störungszone und die daran gebundenen Uranlagerstätten, 04.-07. Aug. 1991 in Gera/ThüringenGoogle Scholar
  27. Korn M, Funke S, Wendt S (2008) Seismicity and seismotectonics of West Saxony, Germany—new insights from recent seismicity observed with the Saxonian seismic network. Stud Geophys Geod 52:479–492. CrossRefGoogle Scholar
  28. Krawczyk CM, Stiller M, The DEKORP-BASIN Research Group (1999) Reflection seismic constraints on Palaeozoic crustal structure and Moho beneath the NE German Basin. Tectonophysics 314:241–253CrossRefGoogle Scholar
  29. Lesueur C, Cara M, Scotti O, Schlupp A, Sira C (2013) Linking ground motion measurements and macroseismic observations in France: a case study based on accelerometric and macroseismic databases. J Seismol 17:313–333. CrossRefGoogle Scholar
  30. Leydecker G (2011) Erdbebenkatalog für Deutschland mit Randgebieten für die Jahre 800 bis 2008. Geolog Jahrb. E:59 Bundesanstalt für Geowissenschaften und Rohstoffe, HannoverGoogle Scholar
  31. Mak S, Clements R, Schorlemmer D (2015) Validating intensity prediction equations for Italy by observations. Bull Seismol Soc Am 105:2942–2954. CrossRefGoogle Scholar
  32. Murphy J, O’Brian L (1977) The correlation of peak ground acceleration amplitude with seismic intensity and other physical parameters. Bull Seismol Soc Am 67:877–915Google Scholar
  33. Oncescu MC, Camelbeeck T, Martin H (1994) Source parameters for the Roermond aftershocks of 1992 April 13 - May 2 and site spectra for P and S waves at the Belgian seismic network. Geophys J Int 116:673–682. CrossRefGoogle Scholar
  34. Ottemöller L, Voss P, Havskov J (2016) SEISAN earthquake analysis software for Windows, Solaris, Linux and MacOSX. User manual.
  35. Rappsilber I (ed) (2006) Halle-störung - mitteilungen zu geologie und bergwesen in Sachsen-Anhalt. vol 10, pp 1–154. Landesamt für Geologie und Bergwesen, HalleGoogle Scholar
  36. Richter CF (1958) Elementary seismology. W. H. Freeman and Company, San FranciscoGoogle Scholar
  37. Rubin DB (1981) The Bayesian bootstrap. Ann Stat 9:130–134CrossRefGoogle Scholar
  38. Sato T, Hirasawa T (1973) Body wave spectra from propagating shear cracks. J Phys Earth 21:415–431CrossRefGoogle Scholar
  39. Schwarz J, Beinersdorf S, Meidow H, Ahorner L (2010) Magnitudenorientierter Erdbebenkatalog für deutsche und angrenzende Gebiete: EKDAG – erweiterte Katalog Version 1.0. Bauhaus Universität Weimar.
  40. von Seebach K (1873) Das Mitteldeutsche Erdbeben vom 6. März 1872. Verlag von H. Haessel, LeipzigGoogle Scholar
  41. Takenaka H, Mameda Y, Futamure H (2003) Near-source effect on radiation pattern of high frequency S waves: strong SH-SV mixing observed from aftershocks of the 1997 Northwestern Kagoshima, Japan, earthquakes. Phys Earth Planet Inter 137:31–43. CrossRefGoogle Scholar
  42. Wald D, Quitoriano V, Heaton H, Kanamori H, Scrivner CW, Worden CB (1999) Trinet ’shakemaps’: rapid generation of peak ground motion and intensity maps for earthquakes in Southern California. Earthq Spectra 15:537CrossRefGoogle Scholar
  43. Wald D, Quitoriano V, Pankow KL (2006) Shakemap manual - Technical Manual, Userguide and Software Guide Tech. Report, USGSGoogle Scholar
  44. Wang R (1999) A simple orthonormalization method for stable and efficient computation of Green’s functions. Bull Seis Soc Am 89:733–741Google Scholar
  45. Wang R, Heimann S, Zhang Y, Wang H, Dahm T (2017) Complete synthetic seismograms based on a spherical self-gravitating earth model with an atmosphere-oceanmantle-core structure. Geophys J Int 210:1739–1764. CrossRefGoogle Scholar
  46. Witthauer B (ed) (2016) Erdbebenbeobachtung in Mitteldeutschland, dreijahresbericht 2013–2015 landesamt für umwelt. Landwirtschaft und Geologie, DresdenGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.GFZ German Research Centre for GeosciencesPotsdamGermany
  2. 2.Institute of Earth and Environmental ScienceUniversity of PotsdamPotsdamGermany
  3. 3.Institute for Geophysics and GeologyLeipzig UniversityLeipzigGermany
  4. 4.Landesamt für Geologie und Bergwesen Sachsen-AnhaltHalleGermany
  5. 5.Federal Institute for Geosciences and Natural ResourcesHannoverGermany

Personalised recommendations