Advertisement

Journal of Seismology

, Volume 21, Issue 5, pp 1171–1184 | Cite as

Automatic detection of P- and S-wave arrival times: new strategies based on the modified fractal method and basic matching pursuit

  • Rodrigo Chi-Durán
  • Diana Comte
  • Marcos Díaz
  • Jorge F. Silva
ORIGINAL ARTICLE
  • 199 Downloads

Abstract

In this work, new strategies for automatic identification of P- and S-wave arrival times from digital recorded local seismograms are proposed and analyzed. The database of arrival times previously identified by a human reader was compared with automatic identification techniques based on the Fourier transformation in reduced time (spectrograms), fractal analysis, and the basic matching pursuit algorithm. The first two techniques were used to identify the P-wave arrival times, while the third was used for the identification of the S-wave. For validation, the results were compared with the short-time average over long-time average (STA/LTA) of Rietbrock et al., Geophys Res Lett 39(8), (2012) for the database of aftershocks of the 2010 Maule M w = 8.8 earthquake. The identifiers proposed in this work exhibit good results that outperform the STA/LTA identifier in many scenarios. The average difference from the reference picks (times obtained by the human reader) in P- and S-wave arrival times is ∼ 1 s.

Keywords

Autopicking Fractal analysis STA/LTA Basic matching pursuit Modified fractal method 

Notes

Acknowledgements

We thank Andreas Rietbrock for the use of his STA/LTA software in this study, and also the anonymous reviewers who contributed to the improvement of our work. This research was supported by FONDECYT, Project 1130071. J. F. Silva acknowledges support from the Advanced Center for Electrical and Electronic Engineering, Basal Project FB0008.

References

  1. AlBinHassan NM, Luo Y, Al-Faraj MN (2006) 3D edge-preserving smoothing and applications. Geophysics 71(4):P5–P11CrossRefGoogle Scholar
  2. Allen R (1978) Automatic earthquake recognition and timing from single traces. Bull Seismol Soc Am 68(5):1521–1532Google Scholar
  3. Allen R (1982) Automatic phase pickers: their present use and future prospects. Bull Seismol Soc Am 72(6B):S225–S242Google Scholar
  4. Anant KS, Dowla FU (1997) Wavelet transform methods for phase identification in three-component seismograms. Bull Seismol Soc Am 87(6):1598–1612Google Scholar
  5. Baer M, Kradolfer U (1987) An automatic phase picker for local and teleseismic events. Bull Seismol Soc Am 77(4):1437–1445Google Scholar
  6. Bai CY, Kennett B (2000) Automatic phase-detection and identification by full use of a single three-component broadband seismogram. Bull Seismol Soc Am 90(1):187–198CrossRefGoogle Scholar
  7. Cichowicz A (1993) An automatic S-phase picker. Bull Seismol Soc Am 83(1):180–189Google Scholar
  8. Dai H, MacBeth C (1995) Automatic picking of seismic arrivals in local earthquake data using an artificial neural network. Geophys J Int 120(3):758–774CrossRefGoogle Scholar
  9. Durka P, Blinowska K (1995) Analysis of EEG transients by means of matching pursuit. Ann Biomed Eng 23(5):608–611CrossRefGoogle Scholar
  10. Earle PS, Shearer PM (1994) Characterization of global seismograms using an automatic-picking algorithm. Bull Seismol Soc Am 84(2):366–376Google Scholar
  11. Jones JP, van der Baan M (2015) Adaptive STA–LTA with outlier statistics. Bull Seismol Soc Am 105(3):1606–1618Google Scholar
  12. Joswig M (1990) Pattern recognition for earthquake detection. Bull Seismol Soc Am 80(1):170–186Google Scholar
  13. Klinkenberg B (1994) A review of methods used to determine the fractal dimension of linear features. Math Geol 26(1):23–46CrossRefGoogle Scholar
  14. Korvin G (1992) Fractal models in the earth sciences. Elsevier Science LtdGoogle Scholar
  15. Küperkoch L, Meier T, Brüstle A, Lee J, Friederich W (2012) Automated determination of S-phase arrival times using autoregressive prediction: application to local and regional distances. Geophys J Int 188(2):687–702CrossRefGoogle Scholar
  16. Küperkoch L, Meier T, Lee J, Friederich W, Group EW et al (2010) Automated determination of P-phase arrival times at regional and local distances using higher order statistics. Geophys J Int 181(2):1159–1170Google Scholar
  17. Mallat SG, Zhang Z (1993) Matching pursuits with time-frequency dictionaries. IEEE Trans Signal Process 41(12):3397–3415CrossRefGoogle Scholar
  18. Mandelbrot BB (1983) The fractal geometry of nature: W. H. Freeman and CompanyGoogle Scholar
  19. Nippress S, Rietbrock A, Heath A (2010) Optimized automatic pickers: application to the ANCORP data set. Geophys J Int 181(2):911–925Google Scholar
  20. Peters EE (1994) Fractal market analysis: applying chaos theory to investment and economics, vol 24. WileyGoogle Scholar
  21. Phillips PJ (1998) Matching pursuit filters applied to face identification. IEEE Trans Image Process 7(8):1150–1164CrossRefGoogle Scholar
  22. Rawles C, Thurber C (2015) A non-parametric method for automatic determination of P-wave and S-wave arrival times: application to local micro earthquakes. Geophys J Int 202(2):1164–1179CrossRefGoogle Scholar
  23. Rietbrock A, Ryder I, Hayes G, Haberland C, Comte D, Roecker S, Lyon-Caen H (2012) Aftershock seismicity of the 2010 Maule mw = 8.8, Chile, earthquake: Correlation between co-seismic slip models and aftershock distribution Geophys Res Lett 39(8)Google Scholar
  24. Rinehart AJ, McKenna SA, Dewers TA (2016) Using wavelet covariance models for simultaneous picking of overlapping P- and S-wave arrival times in noisy single-component data. Seismological Research LettersGoogle Scholar
  25. Ross ZE, Ben-Zion Y (2014a) An earthquake detection algorithm with pseudo-probabilities of multiple indicators. Geophys J Int 197(1):458–463Google Scholar
  26. Ross ZE, Ben-Zion Y (2014b) Automatic picking of direct P, S seismic phases and fault zone head waves. Geophys J Int 199(1):368–381Google Scholar
  27. Sabbione JI, Velis D (2010) Automatic first-breaks picking: new strategies and algorithms. Geophysics 75(4):V67–V76CrossRefGoogle Scholar
  28. Sugihara G, May RM (1990) Applications of fractals in ecology. Trends Ecol Evol 5(3):79–86CrossRefGoogle Scholar
  29. Turcotte DL (1989) Fractals in geology and geophysics Fractals in geophysics. Springer, pp 171–196Google Scholar
  30. Turcotte DL (1997) Fractals and chaos in geology and geophysicsGoogle Scholar
  31. Vincent P, Bengio Y (2002) Kernel matching pursuit. Mach Learn 48(1-3):165–187CrossRefGoogle Scholar
  32. Wang Y (2006) Seismic time-frequency spectral decomposition by matching pursuit. Geophysics 72 (1):V13–V20CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Rodrigo Chi-Durán
    • 1
  • Diana Comte
    • 2
  • Marcos Díaz
    • 1
  • Jorge F. Silva
    • 1
  1. 1.Departamento de Ingeniería Eléctrica and Advanced Mining Technology Center (AMTC), Facultad de Ciencias Físicas y MatemáticasUniversidad de ChileSantiagoChile
  2. 2.Departamento de Geofísica and Advanced Mining Technology Center (AMTC), Facultad de Ciencias Físicas y MatemáticasUniversidad de ChileSantiagoChile

Personalised recommendations