Advertisement

Journal of Seismology

, Volume 21, Issue 3, pp 551–565 | Cite as

Magnitude M w in metropolitan France

  • Michel Cara
  • Marylin Denieul
  • Olivier Sèbe
  • Bertrand Delouis
  • Yves Cansi
  • Antoine Schlupp
ORIGINAL ARTICLE

Abstract

The recent seismicity catalogue of metropolitan France Sismicité Instrumentale de l’Hexagone (SI-Hex) covers the period 1962–2009. It is the outcome of a multipartner project conducted between 2010 and 2013. In this catalogue, moment magnitudes (M w) are mainly determined from short-period velocimetric records, the same records as those used by the Laboratoire de Détection Géophysique (LDG) for issuing local magnitudes (M L) since 1962. Two distinct procedures are used, whether M L-LDG is larger or smaller than 4. For M L-LDG >4, M w is computed by fitting the coda-wave amplitude on the raw records. Station corrections and regional properties of coda-wave attenuation are taken into account in the computations. For M L-LDG ≤4, M w is converted from M L-LDG through linear regression rules. In the smallest magnitude range M L-LDG <3.1, special attention is paid to the non-unity slope of the relation between the local magnitudes and M w. All M w determined during the SI-Hex project is calibrated according to reference M w of recent events. As for some small events, no M L-LDG has been determined; local magnitudes issued by other French networks or LDG duration magnitude (M D) are first converted into M L-LDG before applying the conversion rules. This paper shows how the different sources of information and the different magnitude ranges are combined in order to determine an unbiased set of M w for the whole 38,027 events of the catalogue.

Keywords

Earthquake Magnitude Seismicity Seismic hazard France 

Notes

Acknowledgments

The SI-Hex project has been conducted thanks to the contribution of the French Ministry of Ecology, Sustainable Development and Energy (MEDDE), together with CNRS, six universities and CEA (conventions no. 0007147 and no. 2100474508). The coda method for magnitude was developed by Marylin Denieul (Ph-D grant linked to the SIGMA/EDF research program). A large part of the material presented in this paper is extracted from the SI-Hex MEDDE final reports (2013).

References

  1. Bakun W (1984) Seismic moments, local magnitudes, and coda-duration magnitudes for earthquakes in Central California. B Seismol Soc Am 74:439–458Google Scholar
  2. Bethmann F, Deichmann N, Mai PM (2011) Scaling relations of local magnitude versus moment magnitude for sequences of similar earthquakes in Switzerland. B Seismol Soc Am 101:515–534Google Scholar
  3. Braunmiller J, Deichmann N, Giardini D, Wiemer S, SED Magnitude Working Group (2005) Homogeneous moment-magnitude calibration in Switzerland. B Seismol Soc Am 95:58–74CrossRefGoogle Scholar
  4. Brune JN (1970) Tectonic stress and the spectra of seismic shear waves from earthquakes. J Geophy Res 75:4997–5009CrossRefGoogle Scholar
  5. Brune JN (1971) Correction. J Geophys Res 76:5002. doi: 10.1029/JB076i020p05002 CrossRefGoogle Scholar
  6. Campillo M, Plantet J-L, Bouchon M (1985) Frequency-dependent attenuation in the crust beneath Central France from Lg waves: data analysis and numerical modeling. B Seismol Soc Am 75:1395–1411Google Scholar
  7. Cara M, Cansi Y, Schlupp A et al (2015) SI-Hex: a new catalogue of instrumental seismicity for metropolitan France. Bull Soc géol France 186:3–19CrossRefGoogle Scholar
  8. Castellaro S, Mulargia F, Kagan YY (2006) Regression problems for magnitudes. Geophys J Int 165:913–930CrossRefGoogle Scholar
  9. Chevrot S, Sylvander M, Delouis B (2011) A preliminary catalog of moment tensors for the Pyrenees. Tectonophysics 510:239–251CrossRefGoogle Scholar
  10. Deichmann N (2006) Local magnitude, a moment revisited. B Seismol Soc Am 96:1267–1277CrossRefGoogle Scholar
  11. Delouis B, Charlety J, Vallée M (2009) A method for rapid determination of moment magnitude Mw for moderate to large earthquakes from the near-field spectra of strong-motion records (MWSYNTH). B Seismol Soc Am 99:1827–1840CrossRefGoogle Scholar
  12. Denieul M, Sèbe O, Cara M, Cansi Y (2015) Mw from crustal coda waves recorded on analog seismograms. B Seismol Soc Am 105:831–849. doi: 10.1785/0120140226 CrossRefGoogle Scholar
  13. Dorbath L, Cuenot N, Genter A, Frogneux M (2009) Seismic response of the fractured and faulted granite of Soultz-sous-Forêt (France) to 5 km deep massive water injections. Geophys J Int 177:653–675. doi: 10.1111/j.1365-246X.2009.04030.x CrossRefGoogle Scholar
  14. Draper NR, Smith H (1981) Applied regression analysis. John Wiley & Sons, New YorkGoogle Scholar
  15. Drouet S, Cotton F, Gueguen P (2010) Vs30, κ, regional attenuation and Mw from accelerograms : application to magnitude 3–5 French earthquakes. Geophys J Int 182:880–898CrossRefGoogle Scholar
  16. Giardini D, Woessner J, Danciu L et al (2013) Seismic Hazard Harmonization in Europe (SHARE): doi: 10.12686/SED-00000001-SHARE
  17. Goertz-Allmann BP, Edwards B, Bethmann F, Deichmann N, Clinton J, Fäh D, Giardini D (2011) A new empirical magnitude scaling relation for Switzerland. B Seismol Soc Am 101:3088–3095CrossRefGoogle Scholar
  18. Godano M, Larroque C, Bertrand E, Courboulex F, Deschamps A, Salichon J, Blaud-Guerry C, Fourteau L, Charléty J, Deshayes P (2013) The October-November 2010 earthquake swarm near Sampeyre (Piedmont Region, Italy): a complex multicluster sequence. Tectonophysics 608:97–111CrossRefGoogle Scholar
  19. Grünthal G, Wahlström R (2012) The European-Mediterranean Earthquake Catalogue (EMEC) for the last millennium. J Seismol 16:535–570. doi: 10.1007/s10950-012-9302-y CrossRefGoogle Scholar
  20. Grünthal G, Wahlström R, Stromeyer D (2013) The SHARE European Earthquake Catalogue (SHEEC) for the time period 1900–2006 and its comparison to the European Mediterranean Earthquake Catalogue (EMEC). J Seismol 17:1339–1344CrossRefGoogle Scholar
  21. Hanks T, Kanamori H (1979) A moment magnitude scale. J Geophys Res 84:2348–2350CrossRefGoogle Scholar
  22. Kanamori H (1977) The energy release in great earthquakes. J Geophys Res 82:2981–2987CrossRefGoogle Scholar
  23. Lacombe C, Campillo M, Paul A, Margerin L (2003) Separation of intrinsic absorption and scattering attenuation from Lg coda decay in Central France using acoustic radiative transfer theory. Geophys J Int 154:417–425CrossRefGoogle Scholar
  24. Mayed AK, Walter WR (1996) Moment, energy, stress drop, and source spectra of western United States earthquakes from regional coda envelopes. J Geophys Res 101:11,195–11,209CrossRefGoogle Scholar
  25. McGuire RK, Robin K (2008) Probabilistic seismic hazard analysis: early history. Earthq Eng Struct D 37:329–338. doi: 10.1002/eqe.765 CrossRefGoogle Scholar
  26. Perrot J, Arroucau P, Guilbert J, Déverchère J, Mazabraud Y, Rolet J, Mocquet A, Mousseau M, Matias L (2005) Analysis of the Mw 4.3 Lorient earthquake sequence: a multidisciplinary approach to the geodynamics of the Armorican Massif, westernmost France. Geophys J Int 162:935–950. doi: 10.1111/j.1365-246X.2005.02706.x Corrigendum, 163, 1136–1136
  27. Rautian T G, Khalturin VI (1978) The use of the coda for determination of the earthquake source spectrum. Bull Seism Soc Am 68:923–948Google Scholar
  28. Rovida A, Camassi R, Gasperini P, Stucchi M (2011) CPTI11, the 2011 version of the parametric catalogue of Italian earthquakes. http://emidius.mi.ingv.it/CPTI. Accessed 14 April 2016
  29. SI-Hex (2013) Sismicité Instrumental de l’Hexagone 1962–2009, rapport final. http://eost.unistra.fr. Accessed … 2016.

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Michel Cara
    • 1
  • Marylin Denieul
    • 1
    • 2
  • Olivier Sèbe
    • 2
  • Bertrand Delouis
    • 3
  • Yves Cansi
    • 2
  • Antoine Schlupp
    • 1
  1. 1.Université de Strasbourg, EOST-UMR7516Strasbourg CedexFrance
  2. 2.CEA, Bruyères Le Chatel, DAM/DIF/LDGArpajonFrance
  3. 3.Université de Nice-Sophia-Antipolis, OCA, UMR 6526ValbonneFrance

Personalised recommendations